Dynamics of a partially degenerate reaction-diffusion cholera model with horizontal transmission and phage-bacteria interaction

Authors

  • Zhenxiang Hu Xinjiang Univ., Urumqi, China
  • Shengfu Wang Xinjiang Univ., Urumqi, China
  • Linfei Nie Xinjiang Univ., Urumqi, China

DOI:

https://doi.org/10.58997/ejde.2023.08

Abstract

We propose a cholera model with coupled reaction-diffusion equations and ordinary differential equations for discussing the effects of spatial heterogeneity, horizontal transmission, environmental viruses and phages on the spread of vibrio cholerae. We establish the well-posedness of this model which includes the existence of unique global positive solution, asymptotic smoothness of semiflow, and existence of a global attractor. The basic reproduction number R0 is obtained to describe the persistence and extinction of the disease. That is, the disease-free steady state is globally asymptotically stable for R0≤1, while it is unstable for R0>1. And, the disease is persistence and the model has the phage-free and phage-present endemic steady states in this case. Further, the global asymptotic stability of phage-free and phage-present endemic steady states are discussed for spatially homogeneous model. Finally, some numerical examples are displayed in order to illustrate the main theoretical results and our opening questions.

For more information see https://ejde.math.txstate.edu/Volumes/2023/08/abstr.html

References

M. Ali, A. R. Nelson, A. L. Lopez, D. A. Sack; Updated global burden of cholera in endemic countries, PLos Neglect. Trop. D., 9 (2015), e0003832. https://doi.org/10.1371/journal.pntd.0003832

J. R. Andrews, S. Basu; Transmission dynamics and control of cholera in Haiti: an epidemic model, Lancet, 377 (2011), 1248-1255. https://doi.org/10.1016/S0140-6736(11)60273-0

L. Cai, G. Fan, C. Yang, J. Wang; Modeling and analyzing cholera transmission dynamics with vaccination age, J. Franklin Inst., 357 (2020), 8008-8034. https://doi.org/10.1016/j.jfranklin.2020.05.030

F. Capone, V. De Cataldis, R. De Luca; Influence of diffusion on the stability of equilibria in a reaction-diffusion system modeling cholera dynamic, J. Math. Biol., 71 (2015), 1107-1131. https://doi.org/10.1007/s00285-014-0849-9

M. F. Carfora, I. Torcicollo; Identification of epidemiological models: the case study of Yemen cholera outbreak, Appl. Anal., (2020), 1-11. https://doi.org/10.1080/00036811.2020.1738402

A. Carpenter; Behavior in the time of cholera: evidence from the 2008-2009 cholera outbreak in Zimbabwe. In: International conference on social computing, behavioral-cultural modeling, and prediction. Springer, Cham, 2014, pp. 237-244. https://doi.org/10.1007/978-3-319-05579-4_29

X. Chen, R. Cui; Global stability in a diffusive cholera epidemic model with nonlinear inci- dence, Appl. Math. Lett., 111 (2021), 106596. https://doi.org/10.1016/j.aml.2020.106596

H. Cheng, Y. Lv, R. Yuan; Long time behavior of a degenerate NPZ model with spatial heterogeneity, Appl. Math. Lett., 132 (2022), 108088. https://doi.org/10.1016/j.aml.2022.108088

C. T. Code¸co; Endemic and epidemic dynamics of cholera: the role of the aquatic reservoir, BMC Infect. Dis., 1 (2001), 1-14. https://doi.org/10.1186/1471-2334-1-1

R. Cui, K.-Y. Lam, Y. Lou; Dynamics and asymptotic profiles of steady states of an epidemic model in advective environments, J. Differ. Equations, 263 (2017), 2343-2373. https://doi.org/10.1016/j.jde.2017.03.045

S. M. Faruque; Role of phages in the epidemiology of cholera, Curr. Top. Microbiol. Immunol., 379 (2014), 165-180. https://doi.org/10.1007/82_2013_358

S. M. Faruque, J. J. Mekalanos; Phage-bacterial interactions in the evolution of toxigenic vibrio cholerae, Virulence, 3 (2012), 556-565. https://doi.org/10.4161/viru.22351

U. Ghosh-Dastidar, S. Lenhart; Modeling the effect of vaccines on cholera transmission, J. Biol. Syst., 23 (2015), 323-338. https://doi.org/10.1142/S0218339015500175

J. K. Hale; Asymptotic Behavior of Dissipative Systems, American Mathematical Society, Providence, RI, 1988.

J. K. Hale, S. M. V. Lunel; Introduction to Functional Differential Equations, Springer- Verlag, New York, 1993. https://doi.org/10.1007/978-1-4612-4342-7

D. M. Hartley, J. G. Morris, D. L. Smith; Hyperinfectivity: a critical element in the ability of V. cholerae to cause epidemics?, PLos Med., 3 (2006), e7. https://doi.org/10.1371/journal.pmed.0030007

S.-B. Hsu, F.-B. Wang, X.-Q. Zhao; Dynamics of a periodically pulsed bio-reactor model with a hydraulic storage zone, J. Dyn. Differ. Equ., 23 (2011), 817-842. https://doi.org/10.1007/s10884-011-9224-3

M. A. Jensen, S. M. Faruque, J. J. Mekalanos, B. R. Levin; Modeling the role of bacteriophage in the control of cholera outbreaks, Proc. Natl. Acad. Sci. USA, 103 (2006), 4652-4657. https://doi.org/10.1073/pnas.0600166103

C. Kapp; Zimbabwe's humanitarian crisis worsens, Lancet, 373 (2009), 447. https://doi.org/10.1016/S0140-6736(09)60151-3

J. D. Kong, W. Davis, H. Wang; Dynamics of a cholera transmission model with immunolog- ical threshold and natural phage control in reservoir, B. Math. Biol., 76 (2014), 2025-2051. https://doi.org/10.1007/s11538-014-9996-9

Y. Lou, X.-Q. Zhao; A reaction-diffusion malaria model with incubation period in the vector population, J. Math. Biol., 62 (2011), 543-568. https://doi.org/10.1007/s00285-010-0346-8

A. Lupica, A. B. Gumel, A. Palumbo; The computation of reproduction numbers for the environment-host-environment cholera transmission dynamics, J. Biol. Syst., 28 (2020), 183- 231. https://doi.org/10.1142/S021833902040001X

P. Magal, X.-Q. Zhao; Global attractors and steady states for uniformly persistent dynamical systems, SIAM J. Math. Anal., 37 (2005), 251-275. https://doi.org/10.1137/S0036141003439173

D. J. Malik, I. J. Sokolov, G. K. Vinner, et al.; Formulation, stabilisation and encapsulation of bacteriophage for phage therapy, Adv. Colloid Interfac., 249 (2017), 100-133. https://doi.org/10.1016/j.cis.2017.05.014

R. H. Martin, H. L. Smith; Abstract functional-differential equations and reaction-diffusion systems, T. Am. Math. Soc., 321 (1990), 1-44. https://doi.org/10.1090/S0002-9947-1990-0967316-X

A. K. Misra, A. Gupta; A reaction-diffusion model for the control of cholera epidemic, J. Biol. Syst., 24 (2016), 431-456. https://doi.org/10.1142/S0218339016500224

A. K. Misra, A. Gupta, E. Venturino; cholera dynamics with bacteriophage infection: a mathematical study, Chaos Soliton. Fract., 91 (2016), 610-621. https://doi.org/10.1016/j.chaos.2016.08.008

A. K. Misra, S. N. Mishra, A. L. Pathak, P. Misra, R. Naresh; Modeling the effect of time delay in controlling the carrier dependent infectious disease-cholera, Appl. Math. Comput., 218 (2012), 11547-11557. https://doi.org/10.1016/j.amc.2012.04.085

A. K. Misra, S. N. Mishra, A. L. Pathak, P. K. Srivastava, P. Chandra; A mathematical model for the control of carrier-dependent infectious diseases with direct transmission and time delay, Chaos Soliton. Fract., 57 (2013), 41-53. https://doi.org/10.1016/j.chaos.2013.08.002

A. K. Misra, V. Singh; A delay mathematical model for the spread and control of water borne diseases, J. Theor. Biol., 301 (2012), 49-56. https://doi.org/10.1016/j.jtbi.2012.02.006

Z. Mukandavire, S. Liao, J. Wang, H. Gaff, D. L. Smith, J. G. Morris; Estimating the reproductive numbers for the 2008-2009 cholera outbreaks in Zimbabwe, Proc. Natl. Acad. Sci. USA, 108 (2011), 8767-8772. https://doi.org/10.1073/pnas.1019712108

E. J. Nelson, J. B. Harris, J. Glenn Morris, S. B. Calderwood, A. Camilli; cholera trans- mission: the host, pathogen and bacteriophage dynamic, Nat. Rev. Microbiol., 7 (2009), 693-702. https://doi.org/10.1038/nrmicro2204

J. B. H. Njagarah, F. Nyabadza; A metapopulation model for cholera transmission dynamics between communities linked by migration, Appl. Math. Comput., 241 (2014), 317-331. https://doi.org/10.1016/j.amc.2014.05.036

R. D. Nussbaum; Eigenvectors of nonlinear positive operators and the linear Krein-Rutman theorem, Fixed Point Theory, 886 (1981), 309-330. https://doi.org/10.1007/BFb0092191

M. Pascual, K. Koelle, A. P. Dobson; Hyperinfectivity in cholera: a new mechanism for an old epidemiological model?, PLos Med., 3 (2006), e280. https://doi.org/10.1371/journal.pmed.0030280

A. Pazy; Semigroups of Linear Operators and Applications to Partial Differential Equations, Springer-Verlag, New York, 1983. https://doi.org/10.1007/978-1-4612-5561-1

A. Rinaldo, E. Bertuzzo, L. Mari, L. Righetto, M. Blokesch, M. Gatto, R. Casagrandi, M. Murray, S. M. Vesenbeckh, I. Rodriguez-Iturbe; Reassessment of the 2010-2011 Haiti cholera outbreak and rainfall-driven multiseason projections, Proc. Natl. Acad. Sci. USA, 109 (2012), 6602-6607. https://doi.org/10.1073/pnas.1203333109

R. P. Sanches, C. P. Ferreira, R. A. Kraenkel; The role of immunity and seasonality in cholera epidemics, B. Math. Biol., 73 (2011), 2916-2931. https://doi.org/10.1007/s11538-011-9652-6

G. Sell, Y. You; Dynamics of Evolutionary Equations, Springer-Verlag, New York, 2002. https://doi.org/10.1007/978-1-4757-5037-9

Z. Shuai, J. H. Tien, P. Van den Driessche; cholera models with hyperinfectivity and tempo- rary immunity, B. Math. Biol., 74 (2012), 2423-2445. https://doi.org/10.1007/s11538-012-9759-4

C. A. Silva-Valenzuela, A. Camilli; Niche adaptation limits bacteriophage predation of vibrio cholerae in a nutrient-poor aquatic environment, Proc. Natl. Acad. Sci. USA, 116 (2019), 1627-1632. https://doi.org/10.1073/pnas.1810138116

H. L. Smith; Monotone Dynamical Systems: An Introduction to the Theory of Competitive and Cooperative Systems, American Mathematical Society, Providence, RI, 1995.

H. L. Smith; Models of virulent phage growth with application to phage therapy, SIAM J. Appl. Math., 68 (2008), 1717-1737. https://doi.org/10.1137/070704514

H. L. Smith, X.-Q. Zhao; Robust persistence for semidynamical systems, Nonlinear Anal- Theor., 47 (2001), 6169-6179. https://doi.org/10.1016/S0362-546X(01)00678-2

H. R. Thieme; Spectral bound and reproduction number for infinite-dimensional population structure and time heterogeneity, SIAM J. Appl. Math., 70 (2009), 188-211. https://doi.org/10.1137/080732870

J. P. Tian, S. Liao, J. Wang; Analyzing the infection dynamics and control strategies of cholera, Discret. Contin. Dyn.-S., (2013), 747-757.

A. R. Tuite, J. Tien, M. Eisenberg, D. J. Earn, J. Ma, D. N. Fisman; cholera epidemic in Haiti, 2010: using a transmission model to explain spatial spread of disease and identify optimal control interventions, Ann. Intern. Med., 154 (2011), 593-601. https://doi.org/10.7326/0003-4819-154-9-201105030-00334

J. Wang, R. Cui; Analysis of a diffusive host-pathogen model with standard incidence and distinct dispersal rates, Adv. Nonlinear Anal., 10 (2021), 922-951. https://doi.org/10.1515/anona-2020-0161

X. Wang, J. Wang; Analysis of cholera epidemics with bacterial growth and spatial movement, J. Biol. Dynam., 9 (2015), 233-261. https://doi.org/10.1080/17513758.2014.974696

X. Wang, F.-B. Wang; Impact of bacterial hyperinfectivity on cholera epidemics in a spatially heterogeneous environment, J. Math. Anal. Appl., 480 (201J. Wang, J. Wang; Analysis of a reaction-diffusion cholera model with distinct dispersal rates in the human population, J. Dyn. Differ. Equ., 33 (2021), 549-575. https://doi.org/10.1007/s10884-019-09820-8

J. Wang, X. Wu; Dynamics and profiles of a diffusive cholera model with bacterial hyperin- fectivity and distinct dispersal rates, J. Dyn. Differ. Equ., (2021), 1-37. https://doi.org/10.1007/s10884-021-09975-3

W. Wang, X.-Q. Zhao; Basic reproduction numbers for reaction-diffusion epidemic models, SIAM J. Appl. Dyn. Syst., 11 (2012), 1652-1673. https://doi.org/10.1137/120872942

Y. Wu, X. Zou; Dynamics and profiles of a diffusive host-pathogen system with distinct dispersal rates, J. Differ. Equations, 264 (2018), 4989-5024. https://doi.org/10.1016/j.jde.2017.12.027

X.-Q. Zhao; Dynamical Systems in Population Biology, 2nd edn, Springer, New York, (2017).

J. Zhou, Y. Yang, T. Zhang; Global dynamics of a reaction-diffusion waterborne pathogen model with general incidence rate, J. Math. Anal. Appl., 466 (2018), 835-859. https://doi.org/10.1016/j.jmaa.2018.06.029

Published

2023-01-24

Issue

Section

Articles

Categories

How to Cite

Dynamics of a partially degenerate reaction-diffusion cholera model with horizontal transmission and phage-bacteria interaction. (2023). Electronic Journal of Differential Equations, 2023(01-87), No. 08, 1-38. https://doi.org/10.58997/ejde.2023.08