Paradigm for the creation of scales and phases in nonlinear evolution equations

Authors

  • Christophe Cheverry Univ. Rennes, Rennes, France
  • Shahnaz Farhat Univ. Rennes, Rennes, France

DOI:

https://doi.org/10.58997/ejde.2023.09

Abstract

The transition from regular to apparently chaotic motions is often observed in nonlinear flows. The purpose of this article is to describe a deterministic mechanism by which several smaller scales (or higher frequencies) and new phases can arise suddenly under the impact of a forcing term. This phenomenon is derived from a multiscale and multiphase analysis of nonlinear differential equations involving stiff oscillating source terms. Under integrability conditions, we show that the blow-up procedure (a type of normal form method) and the Wentzel-Kramers-Brillouin approximation (of supercritical type) introduced in [7,8] still apply. This allows to obtain the existence of solutions during long times, as well as asymptotic descriptions and reduced models. Then, by exploiting transparency conditions (coming from the integrability conditions), by implementing the Hadamard's global inverse function theorem and by involving some specific WKB analysis, we can justify in the context of Hamilton-Jacobi equations the onset of smaller scales and new phases.

For more information see  https://ejde.math.txstate.edu/Volumes/2023/09/abstr.html

References

L. Ambrosio, H. Frid; Multiscale Young measures in almost periodic homogenization and applications. Arch. Ration. Mech. Anal., 192 (2009) (1): 37-85. https://doi.org/10.1007/s00205-008-0127-3

G. Benettin, P. Sempio; Adiabatic invariants and trapping of a point charge in a strong nonuniform magnetic field. Nonlinearity, 7 (1984) (1): 281-303. https://doi.org/10.1088/0951-7715/7/1/014

S. H. Benton, Jr.; The Hamilton-Jacobi equation. Academic Press [Harcourt Brace Jo- vanovich, Publishers], New York-London, 1977. A global approach, Mathematics in Science and Engineering, Vol. 131.

M. Bostan; The Vlasov-Maxwell system with strong initial magnetic field: guiding-center approximation. Multiscale Model. Simul., 6(3) (2007), 1026-1058. https://doi.org/10.1137/070689383

F. Camilli, O. Ley, P. Loreti; Homogenization of monotone systems of Hamilton-Jacobi equa- tions. ESAIM Control Optim. Calc. Var., 16(1) (2010), 58-76. https://doi.org/10.1051/cocv:2008061

I. Capuzzo-Dolcetta, H. Ishii; On the rate of convergence in homogenization of Hamilton- Jacobi equations. Indiana Univ. Math. J., 50(3) (2001), 1113-1129. https://doi.org/10.1512/iumj.2001.50.1933

C. Cheverry; Can One Hear Whistler Waves? Comm. Math. Phys., 338(2) (2015), 641-703. https://doi.org/10.1007/s00220-015-2389-6

C. Cheverry; Anomalous transport. J. Differential Equations, 262(3) (2017), 2987-3033. https://doi.org/10.1016/j.jde.2016.11.012

C. Cheverry, S. Farhat; Long time gyrokinetic equations. preprint: hal-03914191, Dec. 2022.

C. Cheverry, O. Gu'es; Counter-examples to concentration-cancellation. Arch. Ration. Mech. Anal., 189(3) (2008), 363-424. https://doi.org/10.1007/s00205-008-0132-6

C. Cheverry, O. Gu'es, G. M'etivier. Oscillations fortes sur un champ lin'eairement d'eg'en'er'e. Ann. Sci. E'cole Norm. Sup. (4), 36(5) (2003), 691-745. https://doi.org/10.1016/j.ansens.2003.10.001

M. Colin, D. Lannes; Short pulses approximations in dispersive media. SIAM J. Math. Anal., 41(2) (2009), 708-732. https://doi.org/10.1137/070711724

J.-F. Coulombel, O. Gues, M. Williams; Resonant leading order geometric optics expansions for quasilinear hyperbolic fixed and free boundary problems. Comm. Partial Differential Equations, 36(10) (2011), 1797-1859. https://doi.org/10.1080/03605302.2011.594474

M. G. Crandall, P.-L. Lions; Viscosity solutions of Hamilton-Jacobi equations. Trans. Amer. Math. Soc., 277(1) (1983), 1-42. https://doi.org/10.1090/S0002-9947-1983-0690039-8

E. Dumas; About nonlinear geometric optics. Bol. Soc. Esp. Mat. Apl. SeMA, (35) (2006), 7-41.

C. Fermanian Kammerer, C. Lasser; Wigner measures and codimension two crossings. J. Math. Phys., 44(2) (2003), 507-527. https://doi.org/10.1063/1.1527221

J. Firozaly; Homogenization of Hamilton-Jacobi equations and applications to traffic flow modelling. Theses, Universit'e Paris-Est, Dec. 2017.

N. Forcadel, F. Rim, I. Hassan; Stochastic homogenization of Hamilton-Jacobi equations on a junction. working paper or preprint, Apr. 2020.

G. Galise, C. Imbert, R. Monneau; A junction condition by specified homogenization and application to traffic lights. Anal. PDE, 8(8) (2015), 1891-1929. https://doi.org/10.2140/apde.2015.8.1891

I. Gallagher, L. Saint-Raymond; On pressureless gases driven by a strong inhomogeneous magnetic field. SIAM J. Math. Anal., 36(4) (2005), 1159-1176 (electronic). https://doi.org/10.1137/S0036141003435540

D. G'erard-Varet, C. Lacave, T. T. Nguyen, F. Rousset; The vanishing viscosity limit for 2D Navier-Stokes in a rough domain. J. Math. Pures Appl. 119(9) (2010), 45-84, 2018. https://doi.org/10.1016/j.matpur.2017.10.009

B. Helffer, Y. Kordyukov, N. Raymond, S. Vu˜ Ngoc; Magnetic wells in dimension three. Anal. PDE, 9(7) (2016), 1575-1608. https://doi.org/10.2140/apde.2016.9.1575

C. Imbert, R. Monneau; Homogenization of first-order equations with (u/E)-periodic Hamil- tonians. I. Local equations. Arch. Ration. Mech. Anal., 187(1) (2008), 49-89. https://doi.org/10.1007/s00205-007-0074-4

D. Lannes; The water waves problem, volume 188 of Mathematical Surveys and Monographs. American Mathematical Society, Providence, RI, 2013. Mathematical analysis and asymp- totics. https://doi.org/10.1090/surv/188

C. C. Mei, B. Vernescu; Homogenization methods for multiscale mechanics. World Scientific Publishing Co. Pte. Ltd., Hackensack, NJ, 2010. https://doi.org/10.1142/7427

G. M'etivier; The mathematics of nonlinear optics. Handbook of Differential Equations: Evo- lutionary Equations, 5:169-313, 2009. https://doi.org/10.1016/S1874-5717(08)00210-7

J. Rauch; Hyperbolic Partial Differential Equations and Geometric Optics. Graduate Studies in Mathematics. American Mathematical Society, 2012. https://doi.org/10.1090/gsm/133

S. Schochet; Fast singular limits of hyperbolic PDEs. J. Differential Equations, 114(2):476- 512, 1994. https://doi.org/10.1006/jdeq.1994.1157

E. R. Tracy, A. J. Brizard, A. S. Richardson, A. N. Kaufman; Ray Tracing and Beyond: Phase Space Methods in Plasma Wave Theory. Cambridge University Press, 2014. https://doi.org/10.1017/CBO9780511667565

Published

2023-01-25

Issue

Section

Articles

Categories

How to Cite

Paradigm for the creation of scales and phases in nonlinear evolution equations. (2023). Electronic Journal of Differential Equations, 2023(01-87), No. 09, 1-59. https://doi.org/10.58997/ejde.2023.09