Linear higher-order fractional differential and integral equations

Authors

  • Kunquan Lan Toronto Metropolitan Univ., Toronto, Ontario, Canada

DOI:

https://doi.org/10.58997/ejde.2023.01

Abstract

We study the equivalences and the implications between linear (or homogeneous) nth order fractional differential equations (FDEs) and integral equations in the spaces L1(a,b) and C[a,b] when n≥ 2. We establish the equivalence in C[a,b] of the IVP of the nth order FDE subject to the initial condition u(i)(a)=ui for i in {0,1,...,n-1} when n≥2. The difficulty is that the known conditions for such equivalence for the first order FDEs are not sufficient for equivalence in the nth order FDEs with n≥2. In this article we provide additional conditions to ensure the equivalence for the nth order FDEs with n≥2. In particular, we obtain conditions under which solutions of the integral equations are solutions of the linear nth order FDEs. These results are keys for further studying the existence of solutions and nonnegative solutions to initial and boundary value problems of nonlinear nth order FDEs. This is done via the corresponding integral equations by topological methods such as the Banach contraction principle, fixed point index theory, and degree theory.

For more information see  https://ejde.math.txstate.edu/Volumes/2023/01/abstr.html

References

I. Bachar, H. Maagle, V. D. Radulescu; Positive solutions for superlinear Riemann-Liouville fractional boundary-value problems, Electr. J. Differ. Equ., (2017), No. 240, 1-16.

L. C. Becker, T. A. Burton, I. K. Purnaras; Integral and fractional equations, positive solutions, and Schaefer's fixed point theorem, Opuscula Math. 36 (2016), 431-458. https://doi.org/10.7494/OpMath.2016.36.4.431

L. Blank; Numerical treatment of differential equations of fractional order, Numerical Analysis Report 287. Manchester Centre for Computational Mathematics, 1996.

M. Cichon, H. A. H. Salem; On the lack of equivalence between differential and integral forms of the Caputo-type fractional problems, J. Pseudo-Differ. Oper. Appl., 11 (2020), 1869-1895. https://doi.org/10.1007/s11868-020-00345-z

K. Diethelm; The analysis of fractional differential equations. An application-oriented exposition using differential operators of Caputo type. Lecture Notes in Mathematics, No. 2004. Springer-Verlag, Berlin, 2010. https://doi.org/10.1007/978-3-642-14574-2

K. Diethelm; Erratum: The mean value theorems and a Nagumo-type uniqueness theorem for Caputo's fractional calculus (Fractional Calculus and Applied Analysis (2012) 15:2 (304-313) DOI: 10.2478/s13540-012-0022-3) J. Fract. Calc. Appl., 20 (2017) (6), 1567-1577. https://doi.org/10.2478/s13540-012-0022-3

K. Diethelm, N. J. Ford; Analysis of fractional differential equations, J. Math. Anal. Appl., 265 (2002), 229-248. https://doi.org/10.1006/jmaa.2000.7194

P. W. Eloe, T. Masthay; Initial value problems for Caputo fractional differential equations, J. Fract. Calc. Appl., 9 (2018), 178-195.

C. S. Goodrich; Existence of a positive solution to a class of fractional differential equations, Appl. Math. Lett., 23 (2010), 1050-1055. https://doi.org/10.1016/j.aml.2010.04.035

R. Gorenflo, R. Rutman; On ultraslow and intermediate processes, in Transform Methods and Special Functions, Sofia 1994 (P. Rusev, I. Dimovski, and V. Kiryakova, Eds.), pp. 61-81, Science Culture Technology, Singapore, 1995.

G. H. Hardy, J. E. Littlewood; Some properties of fractional integrals, I. Math. Z. 27, (1928) (4), 565-606. https://doi.org/10.1007/BF01171116

A. A. Kilbas, B. Bonilla, J. J. Trujillo; Existence and uniqueness theorems for nonlinear fractional differential equations, Demonstratio Math., 33 (2000) (3), 583-602. https://doi.org/10.1515/dema-2000-0315

A. A. Kilbas, S. A. Marzan; Cauchy problem for differential equation with Caputo derivative, Fract. Calc. Appl. Anal., 7 (2004) (3), 297-321.

A. A. Kilbas, S. A. Marzan; Nonlinear differential equations with the Caputo fractional derivative in the space of continuously differentiable functions, Differential Equations 41 (2005) (1), 84-89. https://doi.org/10.1007/s10625-005-0137-y

A. A. Kilbas, H. M. Srivastava, J. J. Trujillo; Theory and Applications of Fractional Differential Equations, North-Holland Mathematics Studies, vol. 204, Elsevier Science B.V., Amsterdam, 2006.

N. Kosmatov, Integral equations and initial value problems for nonlinear differential equations of fractional order, Nonlinear Anal., 70 (2000), 2521-2529. https://doi.org/10.1016/j.na.2008.03.037

K. Q. Lan; Equivalence of higher order linear Riemann-Liouville fractional differential and integral equations, Proc. Amer. Math. Soc., 148 (2020) (12), 5225-5234. https://doi.org/10.1090/proc/15169

K. Q. Lan; Linear first order Riemann-Liouville fractional differential and perturbed Abel's integral equations, J. Differential Equations, 306 (2022), 28-59. https://doi.org/10.1016/j.jde.2021.10.025

K. Q. Lan, W. Lin; Multiple positive solutions of systems of Hammerstein integral equations with applications to fractional differential equations, J. London Math. Soc., 83 (2011) (2), 449-469. https://doi.org/10.1112/jlms/jdq090

K. Q. Lan, W. Lin; Positive solutions of systems of Caputo fractional differential equations, Communi. Appl. Anal., 17 (2013) (1), 61-86.

K. Q. Lan, J. R. L. Webb; A new Bihari inequality and initial value problems of first order fractional differential equations, submitted for publication.

I. Podlubny; Fractional differential equations. An introduction to fractional derivatives, fractional differential equations, to methods of their solution and some of their applications, Mathematics in Science and Engineering, 198. Academic Press, Inc., San Diego, CA, 1999.

L. F. Richardson; Measure and Integration: A Concise Introduction to Real Analysis, Wiley, New York, 2009. https://doi.org/10.1002/9780470501153

W. Rudin; Real and Complex Analysis, 3th edition, McGraw-Hill, 1987.

S. G. Samko, A. A. Kilbas, O. I. Marichev; Fractional Integrals and Derivatives: Theory and Applications, Gordon and Breach Science Publishers, Yverdon, 1993.

J. D. Tamarkin; On integrable solutions of Abel's integral equation, Ann. Math., 31 (1930), 219-229. https://doi.org/10.2307/1968092

J. R. L. Webb; Weakly singular Gronwall inequalities and applications to fractional differential equations, J. Math. Anal. Appl., 471 (2019), 692-711. https://doi.org/10.1016/j.jmaa.2018.11.004

J. R. L. Webb; Compactness of nonlinear integral operators with discontinuous and with singular kernels, J. Math. Anal. Appl., 509 (2022), 126000. https://doi.org/10.1016/j.jmaa.2022.126000

J. R. L. Webb; Initial value problems for Caputo fractional equations with singular nonlinearities, Electr. J. Differ. Equ., (2019), No. 117, 1-32.

J. R. L. Webb; A fractional Gronwall inequality and the asymptotoc behaviour of global solutions of Caputo fractional problems, Electr. J. Differ. Equ., (2021), No. 80, 1-22.

Downloads

Published

2023-01-04

Issue

Section

Articles

Categories

How to Cite

Linear higher-order fractional differential and integral equations. (2023). Electronic Journal of Differential Equations, 2023(01-87), No. 01, 1-20. https://doi.org/10.58997/ejde.2023.01