Boundedness, stability and pattern formation for a predator-prey model with Sigmoid functional response and prey-taxis

Authors

  • Zhihong Zhao Univ. of Science and Tech., Beijing, China
  • Huanqin Hu Univ. of Science and Tech., Beijing, China

DOI:

https://doi.org/10.58997/ejde.2023.37

Abstract

This article concerns the structure of the nonconstant steady states for a predator-prey model of Leslie-Gower type with Sigmoid functional and prey-taxis subject to the homogeneous Neumann boundary condition. The existence of bounded classical global solutions is discussed in bounded domains with arbitrary spatial dimension and any prey-taxis sensitivity coefficient. The local stability of the homogeneous steady state is analyzed to show that the prey-taxis sensitivity coefficient destabilizes the stability of the homogeneous steady state when prey defends. Then we study the existence and stability of the nonconstant positive steady state of the system over 1D domain by applying the bifurcation theory and present properties of local branches such as pitchfork and turning direction. Moreover, we discuss global bifurcation, homogeneous steady state solutions, nonconstant steady states solutions, spatio-temporal periodic solutions and spatio-temporal irregular solutions which demonstrate the coexistence and spatial distribution of prey and predator species. Finally, we perform numerical simulations to illustrate and support our theoretical analysis.

For more information see https://ejde.math.txstate.edu/Volumes/2023/37/abstr.html

References

B. Ainseba, M. Bendahmane, A. Noussair; A reaction-diffusion system modeling predator- prey with prey-taxis, Nonlinear Anal. Real World Appl., 9 (2008), no. 5, 2086-2105. https://doi.org/10.1016/j.nonrwa.2007.06.017

N. Bellomo, A. Bellouquid, Y. Tao, M. Winkler; Toward a mathematical theory of keller- segel models of pattern formation in biological tissues, Math. Models Methods Appl. Sci., 25 (2015), no. 9, 1663-1763. https://doi.org/10.1142/S021820251550044X

J. Cao, H. Sun, P. Hao, P. Wang; Bifurcation and Turing instability for a predator-prey model with nonlinear reaction cross-diffusion, Appl.Math. Model., 89 (2021), 1663-1677. https://doi.org/10.1016/j.apm.2020.08.030

M. G. Crandall, P. H. Rabinowitz; Bifurcation from simple eigenvalues, J. Functional Analysis, 8 (1971), 321-340. https://doi.org/10.1016/0022-1236(71)90015-2

M. G. Crandall, P. H. Rabinowitz; Bifurcation, perturbation of simple eigenvalues and linearized stability, Arch. Rational Mech. Anal., 52 (1973), 161-180. https://doi.org/10.1007/BF00282325

B. D. Dalziel, E. Thomann, J. Medlock, P. De Leenheer; Global analysis of a predator-prey model with variable predator search rate, J. Math. Biol., 81 (2020), no. 1, 159-183. https://doi.org/10.1007/s00285-020-01504-y

L. C. Evans; Partial differential equations, vol. 19, American Mathematical Soc., 2010. https://doi.org/10.1090/gsm/019

M. P. Hassell, J. H. Lawton, J. R. Beddington; Sigmoid functional responses by invertebrate predators and parasitoids, J. Anim. Ecol., (1977), 249-262. https://doi.org/10.2307/3959

X. He, S. Zheng; Global boundedness of solutions in a reaction-diffusion system of predator-prey model with prey-taxis, Appl. Math. Lett., 49 (2015), 73-77. https://doi.org/10.1016/j.aml.2015.04.017

G. Hu, X. Li, Y. Wang; Pattern formation and spatiotemporal chaos in a reaction-diffusion predator-prey system, Nonlinear Dynam., 81 (2015), no. 1-2, 265-275. https://doi.org/10.1007/s11071-015-1988-2

J. Huang, S. Ruan, J. Song; Bifurcations in a predator-prey system of Leslie type with generalized Holling type III functional response, J. Differential Equations, 257 (2014), no. 6, 1721-1752. https://doi.org/10.1016/j.jde.2014.04.024

J. Jorn ́e; Negative ionic cross diffusion coefficients in electrolytic solutions, J. Theor. Biol., 55 (1975), no. 2, 529-532. https://doi.org/10.1016/S0022-5193(75)80099-3

P. Kareiva, G. Odell; Swarms of predators exhibit "preytaxis" if individual predators use area-restricted search, Am. Nat., 130 (1987), no. 2, 233-270. https://doi.org/10.1086/284707

T. Kato; Perturbation theory for linear operators, Classics in Mathematics, Springer-Verlag, Berlin, 1995, Reprint of the 1980 edition. https://doi.org/10.1007/978-3-642-66282-9

R. Kubo, A. Ugajin, M. Ono; Molecular phylogenetic analysis of mermithid nematodes (mermithida: Mermithidae) discovered from japanese bumblebee (hymenoptera: Bombinae) and behavioral observation of an infected bumblebee, Appl. Entomol. Zool., 51 (2016), no. 4, 549-554. https://doi.org/10.1007/s13355-016-0430-7

J. M. Lee, T. Hillen, M. A. Lewis; Pattern formation in prey-taxis systems, J. Biol. Dyn., 3 (2009), no. 6, 551-573. https://doi.org/10.1080/17513750802716112

P. H. Leslie; Some further notes on the use of matrices in population mathematics, Biometrika, 35 (1948), 213-245. https://doi.org/10.1093/biomet/35.3-4.213

P. H. Leslie, J. C. Gower; The properties of a stochastic model for the predator-prey type of interaction between two species, Biometrika 47 (1960), 219-234. https://doi.org/10.1093/biomet/47.3-4.219

J. D. Murray; Mathematical biology. I, third ed., Interdisciplinary Applied Mathematics, vol. 17, Springer-Verlag, New York, 2002, An introduction.

W. Ni, M. Tang; Turing patterns in the Lengyel-Epstein system for the CIMA reaction, Trans. Amer. Math. Soc., 357 (2005), no. 10, 3953-3969. https://doi.org/10.1090/S0002-9947-05-04010-9

K. J. Painter, T. Hillen; Volume-filling and quorum-sensing in models for chemosensitive movement, Can. Appl. Math. Q., 10 (2002), no. 4, 501-543.

K. J. Painter, T. Hillen; Spatio-temporal chaos in a chemotaxis model, Physica D, 240 (2011), no. 4-5, 363-375. https://doi.org/10.1016/j.physd.2010.09.011

J. Shi, X. Wang; On global bifurcation for quasilinear elliptic systems on bounded domains, J. Differential Equations, 246 (2009), no. 7, 2788-2812. https://doi.org/10.1016/j.jde.2008.09.009

Y. Song, X. Tang; Stability, steady-state bifurcations, and Turing patterns in a predator-prey model with herd behavior and prey-taxis, Stud. Appl. Math., 139 (2017), no. 3, 371-404. https://doi.org/10.1111/sapm.12165

X. Tang, Y. Song; Bifurcation analysis and turing instability in a diffusive predator-prey model with herd behavior and hyperbolic mortality, Chaos Solitons Fractals, 81 (2015), no. part A, 303-314. https://doi.org/10.1016/j.chaos.2015.10.001

X. Tang, Y. Song; Stability, hopf bifurcations and spatial patterns in a delayed diffusive predator-prey model with herd behavior, Appl. Math. Comput. 254 (2015), 375-391. https://doi.org/10.1016/j.amc.2014.12.143

Y. Tao; Global existence of classical solutions to a predator-prey model with nonlinear prey- taxis, Nonlinear Anal. Real World Appl., 11 (2010), no. 3, 2056-2064. https://doi.org/10.1016/j.nonrwa.2009.05.005

C. Tian, Z. Ling, Z. Lin; Turing pattern formation in a predator-prey-mutualist system, Nonlinear Anal. Real World Appl., 12 (2011), no. 6, 3224-3237. https://doi.org/10.1016/j.nonrwa.2011.05.022

A. M. Turing; The chemical basis of morphogenesis, Philos. Trans. Roy. Soc. London Ser. B, 237 (1952), no. 641, 37-72. https://doi.org/10.1098/rstb.1952.0012

R. K. Upadhyay, A. Patra, B. Dubey, N. K. Thakur; A predator-prey interaction model with self-and cross-diffusion in aquatic systems, J. Biol. Syst. 22 (2014), no. 04, 691-712. https://doi.org/10.1142/S0218339014500284

J. Wang, J. Wei, J. Shi; Global bifurcation analysis and pattern formation in homogeneous diffusive predator-prey systems, J. Differential Equations, 260 (2016), no. 4, 3495-3523. https://doi.org/10.1016/j.jde.2015.10.036

M. Wang; Stability and Hopf bifurcation for a prey-predator model with prey-stage structure and diffusion, Math. Biosci., 212 (2008), no. 2, 149-160. https://doi.org/10.1016/j.mbs.2007.08.008

Q. Wang, Y. Song, L. Shao; Nonconstant positive steady states and pattern formation of 1D prey-taxis systems, J. Nonlinear Sci., 27 (2017), no. 1, 71-97. https://doi.org/10.1007/s00332-016-9326-5

X. Wang, W. Wang, G. Zhang; Global bifurcation of solutions for a predator-prey model with prey-taxis, Math. Methods Appl. Sci., 38 (2015), no. 3, 431-443. https://doi.org/10.1002/mma.3079

H. F. Weinberger; Invariant sets for weakly coupled parabolic and elliptic systems, Rend. Mat., (6) 8 (1975), 295-310.

S. Wu, J. Shi, B. Wu; Global existence of solutions and uniform persistence of a diffusive predator-prey model with prey-taxis, J. Differential Equations, 260 (2016), no. 7, 5847-5874. https://doi.org/10.1016/j.jde.2015.12.024

S. Wu, J. Wang, J. Shi; Dynamics and pattern formation of a diffusive predator-prey model with predator-taxis, Math. Models Methods Appl. Sci. 28 (2018), no. 11, 2275-2312. https://doi.org/10.1142/S0218202518400158

L. Zhang, S. Fu; Global bifurcation for a holling-tanner predator-prey model with prey-taxis, Nonlinear Anal. Real World Appl., 47 (2019), 460-472. https://doi.org/10.1016/j.nonrwa.2018.12.002

T. Zhang, X. Liu, X. Meng, T. Zhang; Spatio-temporal dynamics near the steady state of a planktonic system, Comput. Math. Appl., 75 (2018), no. 12, 4490-4504. https://doi.org/10.1016/j.camwa.2018.03.044

Downloads

Published

2023-05-04

Issue

Section

Articles

Categories

How to Cite

Boundedness, stability and pattern formation for a predator-prey model with Sigmoid functional response and prey-taxis. (2023). Electronic Journal of Differential Equations, 2023(01-87), No. 37, 1-20. https://doi.org/10.58997/ejde.2023.37