T-coercivity for the asymptotic analysis of scalar problems with sign-changing coefficients in thin periodic domains

Authors

  • Renata Bunoiu Univ. de Lorraine, France
  • Karim Karim Univ. de Lorraine, France
  • Claudia Timofte Univ. of Bucharest, Romania

DOI:

https://doi.org/10.58997/ejde.2021.59

Keywords:

Sign-changing coefficients; T-coercivity; thin domains; asymptotic analysis

Abstract

We study a scalar problem in thin periodic composite media formed by two materials, a classical one and a metamaterial (also known as negative material). By applying T-coercivity methods and homogenization techniques specific to the thin periodic domains under consideration, for two geometric settings, we derive the homogenized limit problems, which both exhibit dimension-reduction effects.

For more information see https://ejde.math.txstate.edu/Volumes/2021/59/abstr.html

References

G. Allaire; Homogenization and two-scale convergence, SIAM J. Math. Anal. 23 (1992), no. 6, 1482-1518.

B. Amaziane, L. Pankratov, A. Piatnitski; Homogenization of a single phase flow through a porous medium in a thin layer, Math. Models Methods Appl. Sci. 17 (2007), no. 9, 1317-1349.

M. Anguiano; Darcy's laws for non-stationary viscous fluid flow in a thin porous medium, Math. Methods Appl. Sci. 40 (2017), no. 8, 2878-2895.

M. Anguiano, R. Bunoiu; Homogenization of Bingham flow in thin porous media, Netw. Heterog. Media 15 (2020), no. 1, 87-110.

A. Avila, G. Griso, B. Miara, E. Rohan; Multiscale modeling of elastic waves: theoretical justification and numerical simulation of band gaps, Multiscale Model. Simul. 7 (2008), no. 1, 1-21.

A. Bhattacharya, M. Gahn, M. Neuss-Radu; Effective transmission conditions for reaction-diffusion processes in domains separated by thin channels, Applicable Analysis 0 (2020), no. 0, 1-15.

A.-S. Bonnet-Ben Dhia, , L. Chesnel, P. Jr. Ciarlet; T-tial Differential Equations 39 (2014), no. 6, 1007-1031.

A.-S. Bonnet-Ben Dhia, L. Chesnel, P. Jr. Ciarlet; T -coercivity for scalar interface problems between dielectrics and metamaterials, ESAIM Math. Model. Numer. Anal. 46 (2012), no. 6, 1363-1387.

A.-S. Bonnet-Ben Dhia, P. Jr. Ciarlet, C. M. Zwolf; Two-field and three-field formulations for wave transmission between media with opposite sign dielectric constants, J. Comp. Appl. Math. 204 (2007), 408-417.

A.-S Bonnet-Ben Dhia, P. Jr. Ciarlet, C. M. Zwolf; Time harmonic wave diffraction problems in materials with sign-shifting coefficients, J. Comput. Appl. Math. (2008).

E. Bonnetier, C. Dapogny, F. Triki; Homogenization of the eigenvalues of the Neumann-Poincare operator, Arch. Ration. Mech. Anal. 234 (2019), no. 2, 777-855.

G. Bouchitte, C. Bourel; Multiscale nanorod metamaterials and realizable permittivity tensors, Commun. Comput. Phys. 11 (2012), no. 2, 489-507.

G. Bouchitte, Christophe Bourel; Homogenization of finite metallic fibers and 3d-effective permittivity tensor, Tech. report, Universite de Toulon, 2009.

G. Bouchitte, D. Felbacq; Homogenization of a wire photonic crystal: the case of small volume fraction, SIAM J. Appl. Math. 66 (2006), no. 6, 2061-2084 (electronic).

A. Brillard, D. Gomez, M. Lobo, E. Perez, T. A. Shaposhnikova; Boundary homogenization in perforated domains for adsorption problems with an advection term, Appl. Anal. 95 (2016), no. 7, 1517-1533.

R. Bunoiu, L. Chesnel, K. Ramdani, M. Rihani; Homogenization of Maxwell's equations and related scalar problems with sign-changing coefficients, Annales de la Faculte des sciences de Toulouse : Mathematiques (2020).

R. Bunoiu, K. Ramdani; Homogenization of materials with sign changing coefficients, Commun. Math. Sci. 14 (2016), no. 4, 1137-1154.

R. Bunoiu, C. Timofte; Upscaling of a double porosity problem with jumps in thin porous media, Applicable Analysis (2020), 1-18.

D. Caillerie; Homogeneisation desequations de la diffusion stationnaire dans les domaines cylindriques aplatis, RAIRO Anal. Numer. 15 (1981), no. 4, 295-319.

D. Caillerie; Thin elastic and periodic plates, Math. Methods Appl. Sci. 6 (1984), no. 2, 159-191.

E. Canon, M. Lenczner; Modelling of thin elastic plates with small piezoelectric inclusions and distributed electronic circuits. Models for inclusions that are small with respect to the thickness of the plate, J. Elasticity 55 (1999), no. 2, 111-141 (2000).

E. Canon, M. Lenczner; Modeling of thin isotropic elastic plates with small piezoelectric inclusions and distributed electric circuits, Math. Methods Appl. Sci. 38 (2015), no. 1, 66-86.

P. Cazeaux, C. Grandmont, Y. Maday; Homogenization of a model for the propagation of sound in the lungs, Multiscale Model. Simul. 13 (2015), no. 1, 43-71.

L. Chesnel, P. Jr. Ciarlet; T-coercivity and continuous Galerkin methods: application to transmission problems with sign changing coefficients, Numer. Math. 124 (2013), no. 1, 1-29.

E. T. Chung, P. Jr. Ciarlet; A staggered discontinuous Galerkin method for wave propagation in media with dielectrics and meta-materials, J. Comput. Appl. Math. 239 (2013), 189-207.

D. Cioranescu, A. Damlamian, G. Griso; The periodic unfolding method, Series in Contemporary Mathematics, vol. 3, Springer, Singapore, 2018.

A. Damlamian, M. Vogelius; Homogenization limits of the equations of elasticity in thin domains, SIAM J. Math. Anal. 18 (1987), no. 2, 435-451.

A. Damlamian, M. Vogelius; Homogenization limits of diffusion equations in thin domains, RAIRO Model. Math. Anal. Numer. 22 (1988), no. 1, 53-74.

T. Fatima, E. Ijioma, T. Ogawa, A. Muntean; Homogenization and dimension reduction of filtration combustion in heterogeneous thin layers, Netw. Heterog. Media 9 (2014), no. 4, 709-737.

P. Fernandes, M. Raffetto; Existence, uniqueness and finite element approximation of the solution of time-harmonic electromagnetic boundary value problems involving metamaterials, COMPEL 24 (2005), no. 4, 1450-1469.

M. Gahn, W. Jager, M. Neuss-Radu; Correctors and error estimates for reaction-diffusion processes through thin heterogeneous layers in case of homogenized equations with interface diffusion, J. Comput. Appl. Math. 383 (2021), 113126, 29.

M. Gahn, M. Neuss-Radu; Singular limit for reactive diffusive transport through an array of thin channels in case of critical diffusivity, arXiv: Analysis of PDEs (2020).

M. Gahn, M. Neuss-Radu, P. Knabner; Effective interface conditions for processes through thin heterogeneous layers with nonlinear transmission at the microscopic bulk-layer interface, Netw. Heterog. Media 13 (2018), no. 4, 609-640.

A. Gaudiello, M. Lenczner; A two-dimensional electrostatic model of interdigitated comb drive in longitudinal mode, SIAM J. Appl. Math. 80 (2020), no. 2, 792-813.

D. Gomez, M. Lobo, M.-E. Perez-Mart ́ınez;Asymptotics for models of non-stationary diffusion in domains with a surface distribution of obstacles, Math. Methods Appl. Sci. 42 (2019), no. 1, 403-413.

G. Griso, A. Migunova, J. Orlik; Homogenization via unfolding in periodic layer with contact, Asymptot. Anal. 99 (2016), no. 1-2, 23-52.

G. Griso, A. Migunova, J. Orlik; Asymptotic analysis for domains separated by a thin layer made of periodic vertical beams, J. Elasticity 128 (2017), no. 2, 291-331.

V. H. Hoang; Diffusion in a highly heterogeneous thin domain, Asymptot. Anal. 39 (2004), no. 2, 147-167.

C. Jerez-Hanckes, I. Pettersson, V. Rybalko; Derivation of cable equation by multiscale anal- ysis for a model of myelinated axons, Discrete Contin. Dyn. Syst. Ser. B 25 (2020), no. 3, 815-839.

T. A. Mel'nik, A. V. Popov; Asymptotic analysis of boundary-value problems in thin perfo- rated domains with rapidly varying thickness, Nonlinear Oscillations 13 (2010), no. 1, 57-84.

F. Murat, A. Sili; A remark about the periodic homogenization of certain composite fibered media, Netw. Heterog. Media 15 (2020), no. 1, 125-142.

M. Neuss-Radu, W. Jager; Effective transmission conditions for reaction-diffusion processes in domains separated by an interface, SIAM J. Math. Anal. 39 (2007), no. 3, 687-720.

G. Nguetseng; A general convergence result for a functional related to the theory of homogenization, SIAM J. Math. Anal. 20 (1989), no. 3, 608-623.

H.-M. Nguyen; Asymptotic behavior of solutions to the Helmholtz equations with sign chang- ing coefficients, Trans. Amer. Math. Soc. 367 (2015), no. 9, 6581-6595. MR 3356948

H.-M. Nguyen; Limiting absorption principle and well-posedness for the Helmholtz equation with sign changing coefficients, J. Math. Pures Appl. (9) 106 (2016), no. 2, 342-374.

H.-M. Nguyen, S. Sil; Limiting Absorption Principle and Well-Posedness for the Time- Harmonic Maxwell Equations with Anisotropic Sign-Changing Coefficients, Comm. Math. Phys. 379 (2020), no. 1, 145-176.

S. Nicaise, J. Venel; A posteriori error estimates for a finite element approximation of trans- mission problems with sign changing coefficients, J. Comput. Appl. Math. 235 (2011), no. 14, 4272-4282.

G. Oliveri, M. Raffetto; A warning about metamaterials for users of frequency-domain numerical simulators, IEEE Trans. Antennas and Propagation 56 (2008), no. 3, 792-798.

A. Ourir, Y. Gao, A. Maurel, J.-J. Marigo; Homogenization of Thin and Thick Metamaterials and Applications, Metamaterials - Devices and Applications (Alejandro L. Borja, ed.), InTech, 2017, pp. 149-165.

E. Shamonina, L. Solymar; Metamaterials: How the subject started, Metamaterials 1 (2007), no. 1, 12-18.

D. R. Smith, J. B. Pendry, M. C. K. Wiltshire; Metamaterials and negative refractive index, Science 305 (2004), no. 5, 788-792.

Downloads

Published

2021-06-26

Issue

Section

Articles

Categories

How to Cite

T-coercivity for the asymptotic analysis of scalar problems with sign-changing coefficients in thin periodic domains. (2021). Electronic Journal of Differential Equations, 2021(01-104), No. 59, 1-22. https://doi.org/10.58997/ejde.2021.59