Normalized solutions for Sobolev critical Schrodinger-Bopp-Podolsky systems

Authors

  • Yuxin Li Northeast Normal Univ., Changchun, Jilin, China
  • Xiaojun Chang Northeast Normal Univ., Changchun, Jilin, China
  • Zhaosheng Feng Univ. of Texas Rio Grande Valley, Edinburg, TX, USA

DOI:

https://doi.org/10.58997/ejde.2023.56

Keywords:

Normalized solutions; Schrodinger-Bopp-Podolsky system; Lagrange multiplier; ground state; variational method

Abstract

We study the Sobolev critical Schrodinger-Bopp-Podolsky system $$\displaylines{ -\Delta u+\phi u=\lambda u+\mu|u|^{p-2}u+|u|^4u\quad \text{in }\mathbb{R}^3,\cr -\Delta\phi+\Delta^2\phi=4\pi u^2\quad \text{in } \mathbb{R}^3, }$$ under the mass constraint \(\int_{\mathbb{R}^3}u^2\,dx=c \) for some prescribed \(c>0\), where \(2<p<8/3\), \(\mu>0\) is a parameter, and \(\lambda\in\mathbb{R}\) is a Lagrange multiplier. By developing a constraint minimizing approach, we show that the above system admits a local minimizer. Furthermore, we establish the existence of normalized ground state solutions.

For more inofrmation see https://ejde.math.txstate.edu/Volumes/2023/56/abstr.html

References

D. G. Afonso, G. Siciliano; Normalized solutions to a Schrodinger-Bopp-Podolsky system under Neumann boundary conditions, Commun. Contemp. Math., 25 (2023), Paper No. 2150100, 20 pp.

B. Bartosz, J. Mederski; Normalized ground states of the nonlinear Schrodinger equation with at least mass critical growth, J. Funct. Anal., 280 (2021), Paper No. 108989, 26 pp.

T. Bartsch, L. Jeanjean, N. Soave; Normalized solutions for a system of coupled cubic Schrodinger equations on R3, J. Math. Pures Appl., 106 (2016), 583-614.

T. Bartsch, N. Soave; A natural constraint approach to normalized solutions of nonlinear Schrodinger equations and systems, J. Funct. Anal., 272 (2017), 4998-5037.

T. Bartsch, X. Zhong, W. Zou; Normalized solutions for a coupled Schrodinger system, Math. Ann., 380 (2021), 1713-1740.

J. Bellazzini, L. Jeanjean, T. Luo; Existence and instability of standing waves with prescribed norm for a class of Schrodinger-Poisson equations, Proc. Lond. Math. Soc. (3), 107 (2013), 303-339.

J. Bellazzini, G. Siciliano; Scaling properties of functionals and existence of constrained minimizers, J. Funct. Anal., 261 (2011), 2486-2507.

J. Bellazzini, G. Siciliano; Stable standing waves for a class of nonlinear Schrodinger-Poisson equations, Z. Angew. Math. Phys., 62 (2011), 267-280.

M. Bertin, B. Pimentel, C. ValcŽarcel, G. Zambrano; Hamilton-Jacobi formalism for Podolskys electromagnetic theory on the null-plane, J. Math. Phys., 58 (2017), 082902.

D. Bhimani, T. Gou, H. Hajaiej; Normalized solutions to nonlinear Schrodinger equations with competing Hartree-type nonlinearities, Preprint arXiv: 2209.00429, (2022).

F. Bopp; Eine lineare theorie des elektrons, Ann. Phys., 430 (1940), 345-384.

M. Born; On the quantum theory of the electromagnetic field, Proc. Roy. Soc. London Ser. A., 143 (1934), 410-437.

M. Born, L. Infeld; Foundations of the new field theory, Proceedings of the Royal Society of London. Series A, Containing Papers of a Mathematical and Physical Character, 144 (1934), 425-451.

J. Borthwick, X. J. Chang, L. Jeanjean, N. Soave; Normalized solutions of L2-supercritical NLS equations on noncompact metric graphs with localized nonlinearities, Nonlinearity, 36 (2023), 3776-3795.

H. Brezis; Analyse fonctionnelle, Collection MathŽematiques AppliquŽees pour la Maitrise.

[Collection of Applied Mathematics for the Masters Degree], ThŽeorie et applications.

[Theory and applications], Masson, Paris, 1983.

R. Bufalo, B. Pimentel, D. Soto; Causal approach for the electron-positron scattering in generalized quantum electrodynamics, Phys. Rev. D., 90 (2014), 085012.

R. Bufalo, B. Pimentel, D. Soto; Normalizability analysis of the generalized quantum electrodynamics from the causal point of view, Int. J. Mod. Phys. A., 32 (2017), 1750165.

X. J. Chang, L. Jeanjean, N. Soave; Normalized solutions of L2-supercritical NLS equations on compact metric graphs, Ann. Inst. H. Poincare C Anal. Non Lineaire, DOI: 10.4171/AIHPC/8. 18 Y. X.

S. Chen, X. Tang; On the critical Schrodinger-Bopp-Podolsky system with general nonlinearities, Nonlinear Anal., 195 (2020), 111734, 25 pp.

S. Cingolani, L. Jeanjean; Stationary waves with prescribed L2-norm for the planar Schrodinger-Poisson system, SIAM J. Math. Anal., 51 (2019), 3533-3568.

R. Cuzinatto, C. de Melo, L. Medeiros, B. Pimentel, P. Pompeia; Bopp-Podolsky black holes and the no-hair theorem, Eur. Phys. J. C., 78 (2018), 1-9.

P. DAvenia, G. Siciliano; Nonlinear Schrodinger equation in the Bopp-Podolsky electrodynamics: Solutions in the electrostatic case, J. Differ. Equ., 267 (2019), 1025-1065.

Z. Feng, Y. Su; Ground state solution to the biharmonic equation, Z. Angew. Math. Phys., 73 (2022), Paper No. 15, 24 pp.

G. M. Figueiredo, G. Siciliano; Multiple solutions for a Schrodinger-Bopp-Podolsky system with positive potentials, Math. Nachr., 296 (2023), 2332-2351.

C. He, L. Li, S. Chen; Normalized solutions for Schrodinger-Bopp-Podolsky system, Preprint arXiv: 2206.04008, (2022).

Y. X. Hu, X. P. Wu, C. L. Tang, Existence of least-energy sign-changing solutions for the Schrodinger-Bopp-Podolsky system with critical growth, Bull. Malays. Math. Sci. Soc., 46 (2023), 1-19.

L. Jeanjean; Existence of solutions with prescribed norm for semilinear elliptic equations, Nonlinear Anal., 28 (1997), 1633-1659.

L. Jeanjean, J. Jendrej, T. T. Le, N. Visciglia; Orbital stability of ground states for a Sobolev critical Schrodinger equation, J. Math. Pures Appl., 164 (2022), 158-179.

L. Jeanjean, T. T. Le; Multiple normalized solutions for a Sobolev critical Schrodinger- Poisson-Slater equation, J. Differ. Equ., 303 (2021), 277-325.

S. Kanesawa, S. Tomonaga; On a relativistically invariant formulation of the quantum theory of wave fields. V. Case of interacting electromagnetic and meson fields, Progr. Theoret. Phys., 3 (1948), 101-113.

L. Li, P. Pucci, X. Tang; Ground state solutions for the nonlinear Schrodinger-Bopp-Podolsky system with critical Sobolev exponent, Adv. Nonlinear Stud., 20 (2020), 511-538.

Y. Li, B. Zhang; Critical Schrodinger-Bopp-Podolsky System with prescribed mass, J. Geom. Anal., 33 (2023), Paper No. 220, 27 pp.

E. H. Lieb, M. Loss; Analysis, Graduate Studies in Mathematics, American Mathematical Society, Providence, RI, (1997).

X. Lin, S. Zheng; Mixed local and nonlocal Schrodinger-Poisson type system involving variable exponents, Electron. J. Differential Equations, 2022 (2022), Paper No. 81, 16 pp.

P. Lions; The concentration-compactness principle in the calculus of variations. The locally compact case. II, Ann. Inst. H. PoincarŽe Anal. Non Lineaire, 1 (1984), 223-283.

B. Mascaro, G. Siciliano; Positive solutions for a Schrodinger-Bopp-Podolsky system, Commun. Math., 31 (2023), 237-249.

X. Q. Peng, G. Jia; Existence and concentration behavior of solutions for the logarithmic Schrodinger-Bopp-Podolsky system, Z. Angew. Math. Phys., 72 (2021), Paper No. 198, 18 pp.

B. Podolsky; A generalized electrodynamics, Ann. Phys., 62 (1942), 68-71.

S. Q. Qu, X. M. He; Multiplicity of high energy solutions for fractional Schrodinger-Poisson systems with critical frequency, Electron. J. Differential Equations, 2022 (2022), Paper No. 47, 21 pp.

G. Ramos, G. Siciliano; Existence and limit behavior of least energy solutions to constrained Schrodinger-Bopp-Podolsky systems in R3, Z. Angew. Math. Phys., 74 (2023), Paper No. 56, 17 pp.

G. Siciliano, K. Silva; The fibering method approach for a non-linear Schrodinger equation coupled with the electromagnetic field, Publ. Mat., 64 (2020), 373-390.

N. Soave; Normalized ground states for the NLS equation with combined nonlinearities, J. Differ. Equ., 269 (2020), 6941-6987.

N. Soave; Normalized ground states for the NLS equation with combined nonlinearities: The Sobolev critical case, J. Funct. Anal., 279 (2020), 108610, 43pp.

L. X. Wang, H. B. Chen, S. L. Liu; Existence and multiplicity of sign-changing solutions for a Schrodinger-Bopp-Podolsky system, Topol. Methods Nonlinear Anal., 59 (2022), 913-940.

J. C. Wei, Y. Z. Wu; Normalized solutions for Schrodinger equations with critical Sobolev exponent and mixed nonlinearities, J. Funct. Anal., 283 (2022), 109574, 46pp.

M. I. Weinstein; Nonlinear Schrodinger equations and sharp interpolation estimates, Comm. Math. Phys., 87 (1983), 567-576.

Q. Zhang; Sign-changing solutions for Schrodinger-Bopp-Podolsky system with general nonlinearity, Z. Angew. Math. Phys., 73 (2022), Paper No. 235, 15 pp.

Y. Zhu, C. Chen, J. Chen; The Schrodinger-Bopp-Podolsky equation under the effect of nonlinearities, Bull. Malays. Math. Sci. Soc., 44 (2021), 953-980.

Downloads

Published

2023-09-05

Issue

Section

Articles

Categories

How to Cite

Normalized solutions for Sobolev critical Schrodinger-Bopp-Podolsky systems. (2023). Electronic Journal of Differential Equations, 2023(01-87), No. 56, 1-19. https://doi.org/10.58997/ejde.2023.56