Prescribed energy saddle-point solutions of nonlinear indefinite problems

Authors

  • Yavdat Il'yasov Federal Research Centre, RAS, Ufa, Russia
  • Edcarlos Domingos da Silva Federal Univ. of Goias, GO, Brazil
  • Maxwell Lizete da Silva Federal Univ. of Goias, GO, Brazil

DOI:

https://doi.org/10.58997/ejde.2023.23

Keywords:

Indefinite problems, linking theorems, Rayleigh quotient

Abstract

A minimax variational method for finding mountain pass-type solutions with prescribed energy levels is introduced. The method is based on application of the Linking Theorem to the energy-level nonlinear Rayleigh quotients which critical points correspond to the solutions of the equation with prescribed energy. An application of the method to nonlinear indefinite elliptic problems with nonlinearities that does not satisfy the Ambrosetti-Rabinowitz growth conditions is also presented.

For more information see https://ejde.math.txstate.edu/Volumes/2023/23/abstr.html

References

A. Ambrosetti, P. H. Rabinowitz; Dual variational methods in critical point theory and applications J. Func. Anal., 14 (1973), 349-381. https://doi.org/10.1016/0022-1236(73)90051-7

S. N. Antontsev, J. I. Díaz, S. Shmarev; Energy Methods for Free Boundary Problems: Applications to Nonlinear PDEs and Fluid Mechanics. Vol. 46, Springer Science & Business Media, 2001. https://doi.org/10.1007/978-1-4612-0091-8_4

V. I. Arnol'd; Catastrophe theory, Springer Science & Business Media, 2003.

J. Bellazzini, L. Jeanjean, T. Luo; Existence and instability of standing waves with prescribed norm for a class of Schrödinger-Poisson equations, Proceedings of the London Mathematical Society, 107 (2) (2013), 303-339 https://doi.org/10.1112/plms/pds072

V. Benci, P. H. Rabinowitz; Critical point theorems for indefinite functionals, Inv. Math., 52 (1979), 241-273. https://doi.org/10.1007/BF01389883

H. Berestycki, P.-L. Lions; Nonlinear scalar field equations, Pt. 1, Archive for Rational Mechanics and Analysis, 82, (4) (1983), 313-346. https://doi.org/10.1007/BF00250555

R. Carles, Y. Il'yasov; On ground states for the 2D Schrödinger equation with combined nonlinearities and harmonic potential, Studies in Appl. Math., 150 (1) (2023) 92-118. https://doi.org/10.1111/sapm.12534

M. L. Carvalho, Y. Il'yasov, C. A. Santos; Separating solutions of nonlinear problems using nonlinear generalized Rayleigh quotients, Topol. Methods Nonl. Anal., 58 (2) (2021), 453-480. https://doi.org/10.12775/TMNA.2020.075

M. L. Carvalho, Y. Il'yasov, C. A. Santos; Existence of S-shaped type bifurcation curve with dual cusp catastrophe via variational methods. J. Diff. Eq., 334 (2022), 256-279. https://doi.org/10.1016/j.jde.2022.06.021

T. Cazenave; Semilinear Schrödinger equations, Courant Lecture Notes in Mathematics, 10, 2003. https://doi.org/10.1090/cln/010

T. Cazenave, P. L. Lions; Orbital stability of standing waves for some nonlinear Schrödinger equations, Communications in Mathematical Physics, 85 (4) (1982), 549-561. https://doi.org/10.1007/BF01403504

D. Colton, H. W. Engl, A. K. Louis, J. McLaughlin, W. Rundell; Surveys on solution methods for inverse problems. Springer Science & Business Media, 2012.

P. Drábek, J. Milota; Methods of nonlinear analysis, Applications to differential equations. Second edition. Birkhäuser Advanced Texts: Basler Lehrbücher, 2013. https://doi.org/10.1007/978-3-0348-0387-8

D. E. Edmunds, W. D. Evans; Spectral theory and differential operators. Vol. 15, Oxford: Clarendon Press, 1987.

P. L. Felmer; Periodic-Solutions of "Superquadratic" Hamiltonian Systems, Journal of Differential Equations, 102 (1) (1993), 188-207. https://doi.org/10.1006/jdeq.1993.1027

D. Gilbarg, N. S. Trudinger; Elliptic partial differential equations of second order, Berlin: Springer, 1977. https://doi.org/10.1007/978-3-642-96379-7

Y. Il'yasov; Rayleigh quotients of the level set manifolds related to the nonlinear PDE, Minimax Theory and its Applications, 07 (2) (2022), 277-302.

Y. Il'yasov, A. B. Muravnik; Min-Max Principles with Nonlinear Generalized Rayleigh Quotients for Nonlinear Equations. Journal of Mathematical Sciences, 260(6) (2022), 738-747. https://doi.org/10.1007/s10958-022-05732-z

Y. Il'yasov; On fundamental frequency solutions with prescribed action value of the NLS equations. J. Math. Sc., 259 (2) (2021), 187-204. https://doi.org/10.1007/s10958-021-05610-0

Y. Sh. Ilyasov, N. F. Valeev; On nonlinear boundary value problem corresponding to N- dimensional inverse spectral problem, J. Diff. Eq., 266 (8) (2019), 4533-4543. https://doi.org/10.1016/j.jde.2018.10.003

Y. Ilyasov; On extreme values of Nehari manifold method via nonlinear Rayleigh's quotient, TMNA, 49 (2) (2017), 683-714.

L. Jeanjean; Existence of solutions with prescribed norm for semilinear elliptic equations, Nonlinear Analysis: Theory, Methods & Applications, 28(10) (1997), 1633-1659. https://doi.org/10.1016/S0362-546X(96)00021-1

F. R. Klinkhamer, S. M. Nicholas; A saddle-point solution in the Weinberg-Salam theory, Physical Review D, 30 (1984) 2212. https://doi.org/10.1103/PhysRevD.30.2212

N. Manton, P. Sutcliffe; Topological solitons, Cambridge University Press, 2004. https://doi.org/10.1017/CBO9780511617034

D. Motreanu, V. V. Motreanu, N. Papageorgiou; Topological and variational methods with applications to nonlinear boundary value problems, Springer, New York, 2014. https://doi.org/10.1007/978-1-4614-9323-5

M. Reed, B. Simon; Methods of Modern Mathematical Physics. IV. Analysis of Operators, Academic Press [Harcourt Brace Jovanovich, Publishers], 1978.

N. Soave; Normalized ground states for the NLS equation with combined nonlinearities, J. Diff. Eqs, 269(9)(2020) 6941-6987. https://doi.org/10.1016/j.jde.2020.05.016

M. Struwe; Variational methods: applications to nonlinear partial differential equations and Hamiltonian systems, Springer, 2008.

B. N. Zakhariev, A. A. Suzko; Direct and inverse problems: potentials in quantum scattering, Springer Science & Business Media, 2012.

Downloads

Published

2023-03-04

Issue

Section

Articles

Categories

How to Cite

Prescribed energy saddle-point solutions of nonlinear indefinite problems. (2023). Electronic Journal of Differential Equations, 2023(01-87), No. 23, 1-11. https://doi.org/10.58997/ejde.2023.23