Local well-posedness and standing waves with prescribed mass for Schrodinger-Poisson systems with a logarithmic potential in R^2

Authors

  • Xuechao Dou Shandong Univ. of Technology, China
  • Juntao Sun Shandong Univ. of Technology, China

DOI:

https://doi.org/10.58997/ejde.2023.64

Keywords:

Nonlinear Schrodinger-Poisson system; normalized solution; logarithmic external potential; local well-posedness

Abstract

In this article, we consider planar Schrodinger-Poisson systems with a logarithmic external potential \(W(x)=\ln (1+|x|^2)\) and a general nonlinear term \(f\). We obtain conditions for the local well-posedness of the Cauchy problem in the energy space. By introducing some suitable assumptions on \(f\), we prove the existence of the global minimizer. In addition, with the help of the local well-posedness, we show that the set of ground state standing waves is orbitally stable.

For more information see https://ejde.math.txstate.edu/Volumes/2023/64/abstr.html

 

References

F. S. Albuquerque, J. L. Carvalho, G .M. Figueiredo, E. Medeiros; On a planar nonautonomous Schrodinger-Poisson system involving exponential critical growth, Calc. Var. Partial Differential Equations, 60 (2021) 40.

T. Ando, A. B. Fowler, F. Stern; Electronic properties of two-dimensional systems, Rev. Mod. Phys., 54 (1982) 437.

R. Benguria, H. Brezis, E. Lieb; The Thomas-Fermi-von Weizsšacker theory of atoms and molecules, Commun. Math. Phys., 79 (1981) 167-180.

H. Brezis, E. Lieb; A relation between pointwise convergence of functions and convergence of functionals, Proc. Amer. Math. Soc., 88 (1983) 486-490.

I. Catto, P.-L. Lions; Binding of atoms and stability of molecules in Hartree and Thomas- Fermi type theories, Commun. Partial Differential Equations, 18 (1993) 1149-1159.

T. Cazenave; Semilinear Schrodinger equations, CBMS regional conference series in mathematics, New York, Courant Lecture Notes in Mathematics, vol. 10, (2003).

T. Cazenave, P.-L. Lions; Orbital stability of standing waves for some nonlinear Schrodinger equations, Commun. Math. Phys., 85 (1982) 549-561.

S. Chen, X. Tang; On the planar Schrodinger-Poisson system with the axially symmetric potential, J. Differential Equations, 268 (2020) 945-976.

S. Chen, X. Tang; Axially symmetric solutions for the planar Schrodinger-Poisson system with critical exponential growth, J. Differential Equations, 269 (2020) 9144-9174.

S. Cingolani, L. Jeanjean; Stationary waves with prescribed L2-norm for the planar Schrodinger-Poisson system, SIAM J. Math. Anal., 51 (2019) 35333568.

S. Cingolani, T. Weth; On the planar Schrodinger-Poisson system, Ann. Inst. H. PoincarŽe Anal. Non LineairŽe, 33 (2016) 169-197.

J. Dolbeault, R. L. Frank, L. Jeanjean; Logarithmic estimates for mean-field models in dimension two and the Schodinger-Poisson system, Comptes Rendus. Mathematique, 10 (2021) 1279-1293.

S. Doniach, B. A. Huberman; Topological excitations in two-dimensional superconductors, Phys. Review Lett., 42 (1979) 1169.

M. Du, T. Weth; Ground states and high energy solutions of the planar Schrodinger-Poisson system, Nonlinearity, 30 (2017) 3492-3515.

Y. Guo, W. Liang, Y. Li; Existence and uniqueness of constraint minimizers for the planar Schrodinger-Poisson system with logarithmic potentials, arXiv:2212.00234 (2022).

E. H. Lieb; Thomas-Fermi and related theories of atoms and molecules, Rev. Mod. Phys., 53 (1981) 263-301.

E. H. Lieb, M. Loss; Analysis, Graduate Studies in Mathematics, vol. 14, American Mathematical Society, Providence, RI, 2001 (4).

P.-L. Lions; Solutions of Hartree-Fock equations for Coulomb systems, Comm. Math. Phys., 109 (1984) 33-97.

P. A. Markowich, C. A. Ringhofer, C. Schmeiser; Semiconductor Equations, Springer-Verlag, New York, 1990.

S. Masaki; Local existence and WKB approximation of solutions to Schrodinger-Poisson system in the two-dimensional whole space, Comm. Partial Differential Equations, 35 (2010) 2253-2278.

S. Masaki; Energy solution to a Schrodinger-Poisson system in the two-dimensional whole space, SIAM J. Math. Anal. 43 (2011) 2719-2731.

S. Q. Qu, X. M. He; Multiplicity of high energy solutions for fractional Schrodinger-Poisson systems with critical frequency, Electron. J. Differential Equations, 2022 (2022), No. 47, 1-21.

M. Reed, B. Simon; Methods of Modern Mathematical Physics. II. Fourier Analysis, Selfadjointness, Academic Press (Harcourt Brace Jovanovich Publishers), New York, 1975.

J. Stubbe; Bound states of two-dimensional Schrodinger-Newton equations, preprint, arXiv:0807.4059 (2008).

D. Ruiz; The Schrodinger-Poisson equation under the effect of a nonlinear local term, J. Funct. Anal. 237 (2006) 655-674.

J. Sun, T. F. Wu, Z. Feng; Multiplicity of positive solutions for a nonlinear Schrodinger- Poisson system, J. Differential Equations, 260 (2016) 586-627.

J. Sun, T. F. Wu, Z. Feng; Two positive solutions to non-autonomous Schrodinger-Poisson systems, Nonlinearity, 32 (2019), 4002-4032.

K. Yajima; Smoothness and non-smoothness of the fundamental solution of time dependent Schrodinger equations, Comm. Math. Phys. 181 (1996) 605-629.

S. Yao, J. Sun, T. F.Wu; Stationary quantum Zakharov systems involving a higher competing perturbation, Electron. J. Differential Equations, 2020 (2020), No. 06, 1-18.

M. I. Weinstein; Nonlinear Schrodinger equations and sharp interpolation estimates, Commun. Math. Phys., 87 (1982/1983) 567-576.

P. Zhang; Wigner measure and the semiclassical limit of Schrodinger-Poisson equations, SIAM J. Math. Anal. 34 (2003) 700-718.

Downloads

Published

2023-09-25

Issue

Section

Articles

Categories

How to Cite

Local well-posedness and standing waves with prescribed mass for Schrodinger-Poisson systems with a logarithmic potential in R^2. (2023). Electronic Journal of Differential Equations, 2023(01-87), No. 64, 1-13. https://doi.org/10.58997/ejde.2023.64