Transition fronts of two species competition lattice systems in random media

Authors

  • Feng Cao Department of Mathematics Nanjing University of Aeronautics and Astronautics
  • Lu Gao Department of Mathematics Nanjing University of Aeronautics and Astronautics

DOI:

https://doi.org/10.58997/ejde.2020.38

Keywords:

Transition fronts; competition systems; lattice systems; random media.

Abstract

This article studies the existence and non-existence of transition fronts for a two species competition lattice system in random media, and explores the influence of randomness of the media on the wave profiles and wave speeds of such transition fronts. We first establish comparison principle for sub-solutions and super-solutions of the related cooperative system. Next, under some proper assumptions, we construct appropriate sub-solutions and super-solutions for the cooperative system. Finally, we show that random transition fronts exist if their least mean speed is greater than an explicit threshold and there is no random transition front with least mean speed less than the threshold.

For more information see https://ejde.math.txstate.edu/Volumes/2020/38/abstr.html

References

X. Bao; Transition waves for two species competition system in time heterogeneous media, Nonlinear Anal. Real World Appl., 44 (2018), 128-148. https://doi.org/10.1016/j.nonrwa.2018.04.009

X. Bao, W.-T. Li, W. Shen, Z.-C. Wang; Spreading speeds and linear determinacy of time dependent diffusive cooperative/competitive systems, J. Differential Equations, 265 (2018), 3048-3091. https://doi.org/10.1016/j.jde.2018.05.003

F. Cao, L. Gao; Transition fronts of KPP-type lattice random equations, Electron. J. Differential Equations, 2019 (2019), no. 129, 1-20.

F. Cao, W. Shen; Spreading speeds and transition fronts of lattice KPP equations in time heterogeneous media, Discrete Contin. Dyn. Syst., 37 (2017), no. 9, 4697-4727. https://doi.org/10.3934/dcds.2017202

F. Cao, W. Shen; Stability and uniqueness of generalized traveling waves of lattice Fisher KPP equations in heterogeneous media (in Chinese), Sci. Sin. Math., 47 (2017), no. 12, 1787-1808. https://doi.org/10.1360/N012017-00116

S.-N. Chow; Lattice dynamical systems, in: J.W. Macki, P. Zecca (Eds.), Dynamical Systems, in: Lecture Notes in Math., Vol. 1822, Springer, Berlin, 2003, pp. 1-102. https://doi.org/10.1007/978-3-540-45204-1_1

C. Conley, R. Gardner; An application of the generalized Morse index to traveling wave solutions of a competitive reaction diffusion model, Indiana Univ. Math. J., 33 (1984), 319-343. https://doi.org/10.1512/iumj.1984.33.33018

S. R. Dunbar; Traveling wave solutions of diffusive Lotka-Volterra equations, J. Math. Biol., 17 (1983), 11-32. https://doi.org/10.1007/BF00276112

J. Fang, X. Yu, X.-Q. Zhao; Traveling waves and spreading speeds for time-space periodic monotone systems, J. Functional Analysis, 272 (2017), 4222-4262. https://doi.org/10.1016/j.jfa.2017.02.028

J.-S. Guo, F. Hamel; Front propagation for discrete periodic monostable equations, Math. Ann., 335 (2006), 489-525. https://doi.org/10.1007/s00208-005-0729-0

J.-S. Guo, C.-H. Wu; Wave propagation for a two-component lattice dynamical system arising in strong competition models, J. Differential Equations, 250 (2011), 3504-3533. https://doi.org/10.1016/j.jde.2010.12.004

J.-S. Guo, C.-H. Wu; Traveling wave front for a two-component lattice dynamical system arising in competition models, J. Differential Equations, 252 (2012), 4357-4391. https://doi.org/10.1016/j.jde.2012.01.009

Y. Hosono; The minimal spread of traveling fronts for a diffusive Lotka-Volterra competition model, Bull. Math. Biol., 66 (1998), 435-448. https://doi.org/10.1006/bulm.1997.0008

W. Huang; Problem on minimum wave speed for a Lotka-Volterra reaction diffusion competition model, J. Dynam. Differential Equations, 22 (2010), 285-297. https://doi.org/10.1007/s10884-010-9159-0

Y. Kan-on; Parameter dependence of propagation speed of traveling waves for competition diffusion equations, SIAM J. Math. Anal., 26 (1995), 340-363. https://doi.org/10.1137/S0036141093244556

Y. Kan-on; Fisher wave fronts for the Lotka-Volterra competition model with diffusion, Nonlinear Anal., 28 (1997), 145-164. https://doi.org/10.1016/0362-546X(95)00142-I

M. Lewis, B. Li, H. Weinberger; Spreading speed and linear determinacy for two species competition models, J. Math. Biol., 45 (2002), 219-233. https://doi.org/10.1007/s002850200144

F. Li, J. Lu; Spreading solutions for a reaction diffusion equation with free boundaries in time-periodic environment, Electron. J. Differential Equations, 2018 (2018), no. 185, 1-12.

B. Li, H. F. Weinberger, M. Lewis; Spreading speeds as slowest wave speeds for cooperative system, Math. Biosci., 196 (2005), 82-98. https://doi.org/10.1016/j.mbs.2005.03.008

X. Liang, X.-Q. Zhao; Asymptotic speeds of spread and traveling waves for monotone semiflows with applications, Comm. Pure Appl. Math., 60 (2007), 1-40. https://doi.org/10.1002/cpa.20154

J. Mallet-Paret; Traveling waves in spatially discrete dynamical systems of diffusive type, in: J. W. Macki, P. Zecca (Eds.), Dynamical Systems, in: Lecture Notes in Math., Vol. 1822, Springer, Berlin, 2003, pp. 231-298. https://doi.org/10.1007/978-3-540-45204-1_4

J. Mierczyński, W. Shen; Lyapunov exponents and asymptotic dynamics in random Kolmogorov models, J. Evol. Equ., 4 (2004), 371-390. https://doi.org/10.1007/s00028-004-0160-0

R. B. Salako, W. Shen; Long time behavior of random and nonautonomous Fisher-KPP equations. Part II. Transition fronts, arXiv:1806.03508.

W. Shen; Spreading and generalized propagating speeds of discrete KPP models in time varying environments, Front. Math. China 4 (2009), 523-562. 24 F. CAO, L. GAO EJDE-2020/38 https://doi.org/10.1007/s11464-009-0032-6

N. Shigesada, K. Kawasaki; Biological Invasions: Theory and Practice, Oxford Series in Ecology and Evolution, Oxford University Press, Oxford, 1997.

B. Shorrocks, I. R. Swingland; Living in a Patch Environment, Oxford University Press, New York, 1990.

T. Su, G.-B. Zhang; Stability of traveling wavefronts for a three-component Lotka-Volterra competition system on a lattice, Electron. J. Differential Equations, 2018 (2018), no. 57, 1-16.

H. F. Weinberger, M. Lewis, B. Li; Analysis of linear determinacy for speed in cooperative models, J. Math. Biol., 45 (2002), 183-218. https://doi.org/10.1007/s002850200145

X. Yu, X.-Q. Zhao; Propagation phenomena for a reaction advection diffusion competition model in a periodic habitat, J. Dynam. Differential Equations, 29 (2017), 41-66. https://doi.org/10.1007/s10884-015-9426-1

B. Zinner, G. Harris, W. Hudson; Traveling wavefronts for the discrete Fisher's equation, J. Differential Equations, 105 (1993), 46-62. https://doi.org/10.1006/jdeq.1993.1082

Downloads

Published

2020-04-26

Issue

Section

Articles

Categories

How to Cite

Transition fronts of two species competition lattice systems in random media. (2020). Electronic Journal of Differential Equations, 2020(01-132), No. 38, 1-24. https://doi.org/10.58997/ejde.2020.38