Supercooled Stefan problem with a Neumann type boundary condition

Authors

  • Adriana C. Briozzo CONICET and Depto. Matemática FCE, Univ. Austral

DOI:

https://doi.org/10.58997/ejde.2020.49

Keywords:

Stefan problem; supercooling; non-linear thermal diffusivity; similarity solution; determination of thermal coefficient

Abstract

We consider a supercooled one-dimensional Stefan problem with a Neumann boundary condition and a variable thermal diffusivity. We establish a necessary and sufficient condition for the heat flux at the fixed face x=0, in order to obtain existence and uniqueness of a similarity type solution. Moreover we over-specified the fixed face x=0 by a Dirichlet boundary condition aiming at the simultaneous determination of one or two thermal coefficients.

For more information see https://ejde.math.txstate.edu/Volumes/2020/49/abstr.html

References

Barles, G.; Fully nonlinear Neumann type boundary conditions for second-order elliptic and parabolic equations, J. Differential Equations, 106 No. 1,(1993), 90-106. https://doi.org/10.1006/jdeq.1993.1100

Bluman, G.; Kumei, S.; On the remarkable nonlinear diffusion equation, J. Math Phys., 21 (1980), 1019-1023. https://doi.org/10.1063/1.524550

Briozzo, A. C.; Tarzia, D. A.; Exact Solutions for Nonclassical Stefan Problems, International Journal of Differential Equations, Volume 2010, 19 pages (2010), doi:10.1155/2010/868059. https://doi.org/10.1155/2010/868059

Briozzo, A. C.; Natale, M. F.; One-phase Stefan problem with temperature-dependent thermal conductivity and a boundary condition of Robin type, J. Appl. Anal., 21 (2) (2015), pp. 89-97. DOI: 10.1515/JAA-2015-0009 https://doi.org/10.1515/jaa-2015-0009

Briozzo, A. C.; Natale, M. F.; A nonlinear supercooled Stefan problem, Z. Angew. Math. Phys. (2017), 68: 46. https: //doi.org/10.1007/s00033-017-0788-6 https://doi.org/10.1007/s00033-017-0788-6

Broadbridge, P.; Non-integrability of non-linear diffusion-convection equations in two spatial dimensions, J. Phys. A: Math. Gen, 19 (1986), 1245-1257. https://doi.org/10.1088/0305-4470/19/7/025

Broadbridge, P.; Integrable forms of the one-dimensional flow equation for unsaturated heterogeneous porous media, J. Math. Phys., 29 (1988), 622-627. https://doi.org/10.1063/1.528001

Cannon, J. R.; The one-dimensional heat equation, Addison - Wesley, Menlo Park, 1984. https://doi.org/10.1017/CBO9781139086967

Carslaw, H. S.; Jaeger, J. C.; Conduction of heat in solids, London: Oxford University Press, 1959.

Crank, J.; Free and moving boundary problems, Oxford: Clarendon Press, 1984.

Diaz, J. I.; Herrero, M. A.; Liñan, A.; Vazquez, J. L. (Eds.); Free boundary problems: theory and applications, Essex: Pitman Research Notes in Mathematics, Series 323, Longman, (1995).

Fasano, A.; Primicerio, M.; Convexity of the free boundary in some classical parabolic free boundary problems, Riv. Mat. Univ. Parma, 5 (1979), 635-645.

Fasano, A.; Primicerio, M.; Howison, S.; Ockendon, J.; Some remarks on the regularization of supercooled one-phase Stefan problem in one dimension, Quart. Appl. Math., 48 (1990), 153-168. https://doi.org/10.1090/qam/1040239

Fasano, A., Primicerio, M.; New results on some classical parabolic free-boundary problems, Quart. Appl. Math., 38 (1981), 49-460. https://doi.org/10.1090/qam/614552

Fasano, A., Primicerio, M. (Eds.); Nonlinear diffusion problems, Berlin, Lecture Notes in Math. N.1224, Springer Verlag, (1986). https://doi.org/10.1007/BFb0072686

Fokas, A. S.; Yortsos, Y. C.; On the exactly solvable equation St = [(βS +γ)−2Sx]x +α(βS + γ)−2Sx occurring in two-phase flow in porous media, SIAM J. Appl. Math., 42 No 2 (1982), 318-331. https://doi.org/10.1137/0142025

Friedman, A.; Parabolic variational inequalities in one space dimension and smoothness of the free boundary, J. Funct. Anal., 18 (1975), 151-176. https://doi.org/10.1016/0022-1236(75)90022-1

Jensen, R.; Smoothness of the free boundary in the Stefan problem with supercooled water, Illinois J. Math., 22 (1978), 623-629. https://doi.org/10.1215/ijm/1256048471

Knight, J. H., Philip, J. R.; Exact solutions in nonlinear diffusion, J. Engrg. Math., 8 (1974), 219-227. https://doi.org/10.1007/BF02353364

Kenmochi, N.(Ed.); Free Boundary Problems: Theory and Applications, I,II Tokyo: Gakuto International Series: Mathematical Sciences and Applications, Vol. 13, 14, Gakkotosho, (2000).

Lunardini, V. J.; Heat transfer with freezing and thawing,. Elsevier, Amsterdam, 1991.

Petrova, A.; Tarzia, D.; Turner, C.; The one-phase supercooled Stefan problem with temperature-dependent thermal conductivity and a convective term, Advances in Mathematical Sciences and Applications, Vol. 4 No. 1 (1994), 35-50.

Philip, R.; General method of exact solution of the concentration-dependent diffusion equation, Australian J. Physics, 13, 1960, 1-12. https://doi.org/10.1071/PH600001

Primicerio, M.; Qualitative properties of some one-dimensional parabolic free boundary problem, Proc. Seminar on Free Boundary Problems, E. Magenes (Ed.), Ist. Naz. di Alta Matematica, Roma Vol. 1 (1980), 451-460.

Rogers, C.; Application of a reciprocal transformation to a two-phase Stefan problem, J. Phys. A: Mathematical and General, 18 (1985), L105-L109 . https://doi.org/10.1088/0305-4470/18/3/002

Rogers, C.; On a class of moving boundary problems in nonlinear heat conduction: application of a Bäcklund transformation, Int. J. Nonlinear Mechanics, 21 (1986), 249-256 https://doi.org/10.1016/0020-7462(86)90032-6

Rogers, C.; Broadbridge, P.; On a nonlinear moving boundary problem with heterogeneity: application of reciprocal transformation, Journal of Applied Mathematics and Physics (ZAMP), 39 (1988), 122-129. https://doi.org/10.1007/BF00945727

Rogers, C.; On a class of reciprocal Stefan moving boundary problems, Journal of Applied Mathematics and Physics (ZAMP), 66 4 (2015), 2069-2079. https://doi.org/10.1007/s00033-015-0506-1. https://doi.org/10.1007/s00033-015-0506-1

Tarzia, D. A.; A bibliography on moving - free boundary problems for the heat-diffusion equation. The Stefan and related problems, MAT-Serie A, 2 (with 5869 titles on the subject, 300 pages) (2000). www.austral.edu.ar/MAT-SerieA/2(2000). https://doi.org/10.26422/MAT.A.2000.2.tar

Tritscher, P.; Broadbridge, P.; A similarity solution of a multiphase Stefan problem incorporating general non-linear heat conduction, Int. J. Heat Mass Transfer, 37 No 14 (1994), 2113-2121. https://doi.org/10.1016/0017-9310(94)90312-3

Zhang, Q.; Ge, J.; Lin, Z.; Analysis and simulation of radially symmetric solutions for free boundary problems with superlinear reaction term, Electron. J. Differential Equations, 2016, No. 279 (2016), 1-14

Downloads

Published

2020-05-22

Issue

Section

Articles

Categories

How to Cite

Supercooled Stefan problem with a Neumann type boundary condition. (2020). Electronic Journal of Differential Equations, 2020(01-132), No. 49, 1-14. https://doi.org/10.58997/ejde.2020.49