Palais-Smale approaches to semilinear elliptic equations in unbounded domains

Authors

  • Hwai-chiuan Wang National Tsing Hua Univ., Hsinchu, Taiwan

DOI:

https://doi.org/10.58997/ejde.mon.06

Abstract

Let \(\Omega\) be a domain in \(\mathbb{R}^{N}\), \(N\geq1\), and \(2^{\ast}=\infty\) if \(N=1,2\), \(2^{\ast}=\frac{2N}{N-2}\) if \(N\) is greater than 2, \(2 < p < 2^{\ast}\). Consider the semilinear elliptic problem $$\displaylines{ -\Delta u+u=|u|^{p-2}u\quad \hbox{in }\Omega;\\ u\in H_{0}{1}(\Omega). }$$ Let \(H_{0}^{1}(\Omega)\) be the Sobolev space in \(\Omega\). The existence, the nonexistence, and the multiplicity of positive solutions are affected by the geometry and the topology of the domain \(\Omega\). The existence, the nonexistence, and the multiplicity of positive solutions have been the focus of a great deal of research in recent years.

That the above equation in a bounded domain admits a positive solution is a classical result. Therefore the only interesting domains in which this equation admits a positive solution are proper unbounded domains. Such elliptic problems are difficult because of the lack of compactness in unbounded domains. Remarkable progress in the study of this kind of problem has been made by P. L. Lions. He developed the concentration-compactness principles for solving a large class of minimization problems with constraints in unbounded domains. The characterization of domains in which this equation admits a positive solution is an important open question. In this monograph, we present various analyses and use them to characterize several categories of domains in which this equation admits a positive solution or multiple solutions.

For more information see https://ejde.math.txstate.edu/Monographs/06/abstr.html

References

S. Adachi and K. Tanaka, Four positive solutions for the semilinear elliptic equation: −4u+

u = a(x)up + f(x) in RN, Calc. Var. Partial Differential Equations, 11 (2000), 63-95.

R. A. Adams, Sobolev space, Academic Press, New York, 1975.

A. Ambrosetti, Critical points and nonlinear variational problems, Bulletin Soc. Math. France, M´emoire, N.49, 1992.

A. Ambrosetti and P. H. Rabinowitz, Dual variational method in critical point theory and applications, J. Funct. Anal., 14 (1973), 349-381.

T. Aubin, Problemes isoperimetriques et espaces de Sobolev, J. Differential Geom., 11 (1976), 573-598.

J. P. Aubin and I. Ekeland, Applied Nonlinear Analysis, Wiley-Interscience, New York, 1984.

A. Bahri and H. Berestycki, A perturbation method in critical point theory and application, Trans. Amer. Math. Soc., 267 (1981), 1-32.

A. Bahri and J. M. Coron, On a nonlinear elliptic equation involving the critical Sobolev exponent: the effect of the topology of the domain, Comm. Pure Appl. Math., 41 (1988), 253-294.

A. Bahri and L. -P. Lions, Remarques sur la th´eorie variationnelle des points critiques et application, C. R. Acad. Sci. Paris, 301 (1985), 145-147.

A. Bahri and P. -L. Lions, On the existence of positive solutions of semilinear elliptic equations in unbounded domains, Ann. Inst. H. Poincar´e. Ana. Non Lineair´e, 14 (1997), 365-413.

V. Benci and G. Cerami, The effect of topology on the number of positive solutions of nonlinear elliptic problems, Arch. Ration. Mech. Anal., 114 (1991), 79-93.

H. Br´ezis and E. H. Lieb, A relation between pointwise convergence of functions and convergence of functionals, Proc. Amer Math. Soc., 88 (1983), 486-490.

H. Berestycki and P. -L. Lions, Nonlinear scalar field equations. I. Existence of ground state, Arch. Ration. Mech. Anal., 82 (1983), 313-345.

H. Br´ezis, Analyse Fonctionnelle, Theorie et Applications, Masson, Paris, 1983.

H. Br´ezis and L. Nirenberg, Remarks on finding critical points, Comm. Pure Appl. Math., 44(1991), 939-963.

J. Byeon, Existence of large positive solutions of some nonlinear elliptic equations on singularly perturbed domains, Comm. Partial Differential Equations, 22 (1997), 1731-1769.

D. -M. Cao and H. -S. Zhou, Multiple positive solutions of nonhomogeneous semilinear elliptic equations in RN, Proc. Roy. Soc. Edinburgh, Sect. A, 126 (1996), 443-463.

J. Chabrowski, Variational methods for potential operator equations, Walter de Gruyter Studies in Mathematics 24, Walter de Gruyter & Co., Berlin - New York, 1997.

J. Chabrowski, Weak Convergence Methods for Semilinear Elliptic Equations, World Scientific, Singapore, New Jersey, London, Hong Kong, 1999.

J. Chabrowski, Concentration-compactness principle at infinity and semilinear elliptic equations involving critical and subcritical Sobolev exponents, Calc. Var. Partial Differential Equations, 3 (1995), 493-512.

S. -C. Chan and H. -C. Wang, Positive solutions of u(x) − a(x)u(x) + uq(x) = 0 on unbounded exterior spherical flasks , Nonlinear Anal.,TMA 26(1996), 023-2030.

G. Chen, W. -M. Ni, and J. Zhou, Algorithms and visualization for solution of nonlinear elliptic problems, Internat. J. Bifur. Chaos Appl. Sci. Engrg., 10 (2000), 1565-1612.

K. -C. Chen, K. -J. Chen and H. -C. Wang, Symmetry of positive solutions of semilinear elliptic equations on infinite strip domains, J. Differential Equations, 148 (1998), 1-8.

K. -J. Chen, C. -S. Lee and H. -C. Wang, Semilinear elliptic problems in interior and exterior flask domains, Commun. Appl. Nonlinear Anal., 5 (1998), 81-105.

M. -C. Chen, H. -L. Lin and H. -C. Wang, Vitali convergence theorem and Palais Smale conditions, Differential Integral Equations, 15 (2002), 641-656.

K. -J. Chen and H. -C. Wang, A necessary and sufficient condition for Palais-Smale conditions, SIAM J. Math. Anal., 31 (1999), 154-165.

J. M. Coron, Topologie et case limite des injections de Sobolev, C. R. Acad. Sci. Paris Ser I Math., 299 (1984), 209-212.

V. Coti Zelati, Critical point theory and applications to elliptic equations in RN, Nonlinear Functional Analysis and Applications to Differential Equations, ICTP, Trieste, Italy, World Scientific, Singapore, New Jersey, London, Hong Kong, 1997.

E. N. Dancer, The effect of domain shape on the number of positive solution of certain nonlinear equations, J. Differential Equations, 74 (1988), 120-156.

M. A. del Pino and P. L. Felmer, Local mountain passes for semilinear elliptic problems in unbounded domains, Calc. Var. Partial Differential Equations, 4 (1996), 121-137.

M. A. del Pino and P. L. Felmer, Least energy solutions for elliptic equations in unbounded domains, Proc. Roy. Soc. Edinburgh, Sect. A, 126 (1996), 195-208.

W. Ding, Positive solutions of u + u(n+2)/(n−2) = 0 on contractible domains, J. Partial Differential Equations, 2 (1989), 83-88.

M. J. Esteban and P. -L. Lions, Existence and non-existence results for semilinear elliptic problems in unbounded domains, Proc. Roy. Soc. Edinburgh, Sect. A, 93 (1982), 1-12.

B. Gidas, W. -M. Ni, and L. Nirenberg, Symmetry and related properties via the maximum principle, Comm. Math. Phys., 68 (1978), 209-243.

B. Gidas, W. -M. Ni, and L. Nirenberg, Symmetry of positive solutions of nonlinear elliptic equations in RN, Adv. in Math. Suppl. Stud., 7A (1981), 369-402.

D. Gilbarg and N. S. Trudinger, Elliptic Partial Differential Equations of Second order, Springer-Verlag, New York, 1983.

N. Ghoussoub, Duality and perturbation methods in critical point theory, Cambridge Tracts in Math. 107, Cambridge University Press, Cambridge 1993.

P. Grisvard, Elliptic Problems in Nonsmooth Domains, Pitman Advanced Publishing Program, Boston, London, Melbourne, 1985.

E. Heinz, ¨ Uber die Eindeutigkeit beim Cauchyschen Anfangswertproblem einer elliptischen Differentialgleichung zweiter Ordnung, Nachr. Akad. Wiss. G¨ottingen Math.-Phys., XIII, 1 (1955), 1-12.

N. Hirano, Existence of Entire Positive Solutions for Nonhomogeneous Elliptic Equations, Nonlinear Anal., 29 (1997), 889-901.

T. -S. Hsu and H. -C. Wang, A perturbation result of semilinear elliptic equations in exterior

strip domains, Proc. Roy. Soc. Edinburgh Sect. A, 127 (1997), 983-1004.

L. Jeanjean, Two positive solutions for a class of nonhomogeneous elliptic equations, Differential Integral Equations, 10 (1997), 609-624.

S. Jimbo, Singular perturbation of domains and the semilinear elliptic equation II, J. Differential Equations, 75 (1988), 264-289.

S. Jimbo, The singularly perturbed domain and the characterization for the eigenfunctions with Neumann boundary condition, J. Differential Equations, 77 (1989), 322-350.

J. Kazdan and F. Warner, Remarks on some quasilinear elliptic equations, Comm. Pure Appl. Math., 28 (1975), 567-597.

M. -K. Kwong, Uniqueness of positive solutions of u − u + up = 0 in Rn, Arch. Ration. Mech. Anal., 105 (1989), 243-266.

W. -C. Lien, S. -Y. Tzeng, and H. -C. Wang, Existence of solutions of semilinear elliptic

problems in unbounded domains, Differential Integral Equations, 6 (1993), 1281-1298.

J. -L. Lions and E. Zuazua, Approximate controllability of a hydro-elastic coupled system, SMAI Electronic Journal, 1 (1995), 1-15.

P. -L. Lions, The concentration-compactness principle in the calculus of variations. The

locally compact case. I, II, Ann. Inst. H. Poincar´e Anal. Non Lin´eaire, 1 (1984), 109-145; 223-283.

P. -L. Lions, The concentration-compactness principle in the calculus of variations. The limit case. I, II, Rev. Mat. Iberoamericana, 1, No. 1 (l 985), 145-20 1; No. 2 (1985), 45-121.

P. -L. Lions, Symetrie et compacite dans les espaces de Sobolev, J. Funct. Anal., 49 (1982), 315-334.

C. -I. Lin, H. -L. Lin, and H. -C.Wang, Existence of Solutions of Semilinear elliptic Equations

in a Flat Interior Flask Domain, Dynamics of Continuous, Discrete and Impulsive Systems, 10A(2003), 81-90.

H. -L. Lin, H. -C. Wang, and T. -F. Wu, A Palais-Smale approach to Sobolev subcritical operators, Topol. Methods Nonlinear Anal., 20(2002), 393-407.

H. -L. Lin, H. -C. Wang, and T. -F. Wu, Indexes of Domains and their Applications to Semilinear Elliptic Equations, Preprint.

H. -L. Lin, H. -C. Wang and T. -F. Wu, Multiple solutions of semilinear elliptic equations in achieved domains, Preprint.

J. Mawhin and M. Willem, Critical point theory and Hamiltonian systems, Appl. Math. Sci. 74, Springer-Verlag, New York, 1989.

Z. Nehari, On a class of nonlinear second-order differential equations, Trans. Amer. Math. Soc., 95 (1960), 101-123.

W. -M. Ni, Some aspects of semilinear elliptic equations on Rn, Nonlinear Diffusion Equations and Their Equilibrium States II, Springer-Verlag, New York, Berlin, Heidelberg, London, Paris, Tokyo, 1986, 171-206.

R. S. Palais, The principle of symmetric criticality, Comm. Math. Phys., 69 (1979), 19-30.

R. S. Palais and S. Smale, A generalized Morse theory, Bull. Amer Math. Soc., 70 (1964), 165-171.

S. I. Pohoˇzaev, Eigenfunctions of the equation 4u+ f(u) = 0, Soviet Math. Dokl., 6 (1965), 1408-1411.

M. H. Protter, Unique continuation for elliptic equations, Trans. Amer. Math. Soc., 95 (1960), 81-91.

P. H. Rabinowitz, Multiple critical point of perturbed symmetric functionals, Trans. Amer. Math. Soc. 272 (1982), 753-769.

P. H. Rabinowitz, Minimax Methods in Critical Point Theory with Applications to Differential Equations, Regional Conference Series in Mathematics, American Mathematical Society, 1986.

J. T. Schwartz, Nonlinear Functional Analysis, Gordon Breach, Philadelphia, 1969.

M. Struwe, Variational methods, Springer-Verlag, Bertin-Heidelberg, Second edition, 1996.

C. A. Stuart, Bifurcation in Lp(RN) for a semilinear elliptic equation, Proc. London Math. Soc., 45 (1982), 169-192.

G. Talenti, Best constant in Sobolev inequality, Ann. Mat. Pura Appl., 101 (1976), 353-372.

K. Tanaka, Morse indices and critical point related to the symmetric mountain pass theorem and applications, Comm. Partial Differential Equations, 14(1) (1989), 99-128.

G. Tarantello, On nonhomogeneous elliptic involving critical Sobolev exponent, Ann. Inst. H. Poincar´e Anal. Non Lin´eaire, Vol. 9, no. 3 (1992), 281-304.

H. -C. Wang, A Palais-Smale approach to problems in Esteban-Lions domains with holes, Trans. Amer. Math. Soc., 352 (2000), 4237-4256.

H. -C. Wang, The generalized compactness lemma and its applications to nonlinear elliptic problems, Nonlinear Anal. TMA, 13 (1989), 1351-1358.

H. -C. Wang, On the Compactness and the Minimization, Taiwanese J. Math., 6(2002), 441-464.

H. -C. Wang and T. -F. Wu, Symmetry Breaking in a Bounded Symmetry Domain, to appear in Nonlinear Differential Equation Applications.

H. -C. Wang and T. -F. Wu, Symmetric Palais-Smale Conditions with Applications to Three Solutions in Two Bump Domains, Diff. and Integral Equations, 16(2003), 1505-1518.

H. -C. Wang and T. -F. Wu, The Dynamic Systems of Solutions of a Semilinear elliptic Equation, Preprint.

H. -C. Wang and T. -F. Wu, Palais-Smale Decomposition Lemmas in Axially Symmetry Domains, Dynamics of Continuous, Discrete and Impulsive Systems, 0A(2003), 91-102.

M. Willem, Minimax theorems, Birkhauser Verlag, Basel, 1996.

E. Zeidler, Nonlinear Functional Analysis and its Applications II/A, Springer-Verlag, New York, 1989.

X. -P. Zhu, A perturbation result on positive entire solutions of a semilinear elliptic equation, J. Differential Equations, 92 (1991), 163-178.

Downloads

Published

2004-09-30

Issue

Section

Monographs

Categories

How to Cite

Palais-Smale approaches to semilinear elliptic equations in unbounded domains. (2004). Electronic Journal of Differential Equations, 1(Mon. 01-09), Mon. 06, 1-142. https://doi.org/10.58997/ejde.mon.06