The contraction mapping principle and some applications

Authors

  • Robert M. Brooks Univ. of Utah, Salt Lake City, UT, USA
  • Klaus Schmitt Univ. of Utah, Salt Lake City, UT, USA

DOI:

https://doi.org/10.58997/ejde.mon.09

Keywords:

Contraction mapping principle; variational inequalities; Hilbert's projective metric; Cauchy-Kowalweski theorem; boundary value problems; differential and integral equations.

Abstract

These notes contain various versions of the contraction mapping principle. Several applications to existence theorems in the theories of differential and integral equations and variational inequalities are given. Also discussed are Hilbert's projective metric and iterated function systems

For more information see https://ejde.math.txstate.edu/Monographs/0/abstr.html

References

R. Adams, Sobolev Spaces, Academic Press, New York, 1975.

E. L. Allgower and K. Georg, Numerical Continuation Methods, An Introduction, Springer-Verlag, New York, 1990.

H. Amann, On the unique solvability of semilinear operator equations in Hilbert spaces, J. Math. Pures Appl., 61 (1982), pp. 149–175.

L. Amerio and G. Prouse, Almost-periodic Functions and Functional Equations, vol. VIII of The University Series in Higher Mathematics, Van Nostrand, New York, 1971.

S. Banach, Sur les op´erations dans les ensembles abstraits et leur applications aux ´equations integrales, Fundamenta Math., 3 (1922), pp. 133–181.

M. Barnsley, Fractals Everywhere, Academic Press, San Diego, 1988.

F. Bauer, An elementary proof of the Hopf inequality for positive operators, Num. Math., (1965), pp. 331–337.

J. Bebernes and D. Eberly, Mathematical Problems from Combustion Theory, vol. 83 of Applied Math. Sci., Springer Verlag, New York, 1989.

C. Bessaga, On the converse of the Banach fixed - point principle, Colloq. Math., 7 (1959), pp. 41–43.

G. Birkhoff, Extensions of Jentzsch’s theorem, Trans. Amer. Math. Soc., 85 (1957), pp. 219–227.

G. Birkhoff and G. Rota, Ordinary Differential Equations, Blaisdell, Waltham, 1969.

H. Bohr, Fastperiodische Funktionen, Springer, Berlin, 1932.

H. Brezis, Probl`emes unilat´eraux, J. Math. Pures Appl., 51 (1972), pp. 1–168.

H. Brezis, Analyse Fonctionelle, Masson, Paris, 1983.

A. Bruckner, J. Bruckner, and B. Thomson, Real Analysis, Prentice Hall, Upper Saddle River, 1997.

P. Bushell, Hilbert’s metric and positive contraction mappings in a Banach space, Arch. Rat. Mech. Anal., 52 (1973), pp. 330–338.

R. Caccioppoli, Un teorema generale sull’esistenza de elemente uniti in una transformazione funzionale, Rend. Acad. Naz. Linzei, 11 (1930), pp. 31–49.

M. Chipot, Variational Inequalities and Flow in Porous Media, vol. 52 of Applied Math. Sciences, Springer, New York, 1984.

P. G. Ciarlet and P. Rabier, Les ´ Equations de von Karman, Springer, Berlin, 1980.

W. Coles and T. Sherman, Convergence of successive approximations for nonlinear two point boundary value problems, SIAM J. Appl. Math., 15 (1967), pp. 426–454.

A. Coppel, Almost periodic properties of ordinary differential equations, Ann. Mat. Pura Appl., 76 (1967), pp. 27–50.

C. Corduneanu, Almost Periodic Functions, John Wiley and Sons, New York, 1968.

K. Deimling, Nonlinear Functional Analysis, Springer, 1985.

S. Dub´e and A. Mingarelli, Note on a non-oscillation theorem of Atkinson, Electr. J. Differential Equations, 2004 (2004), pp. 1–6.

J. Dugundji, Topology, Allyn and Bacon, Boston, 1973.

G. Duvaut and J. L. Lions, Les In´equations en M´ecanique et en Physique, Dunod, Paris, 1972.

M. Edelstein, An extension of Banach’s contraction principle, Proc. Amer. Math. Soc., 12 (1961), pp. 7–10.

M. Edelstein, On fixed and periodic points under contraction mappings, J. London Math. Society, 37 (1962), pp. 74–79.

L. C. Evans, Partial Differential Equations, American Math. Soc., Providence, 1998.

J. Favard, Le¸cons sur les fonctions presque-p´eriodiques, Gauthier-Villars, Paris, 1933.

A. M. Fink, Almost Periodic Differential Equations, vol. 377, Springer Verlag, Berlin, 1974.

P. M. Fitzpatrick, Advanced Calculus: A Course in Mathematical Analysis, PWS Publishing Company, Boston, 1996.

A. Friedman, Variational Principles and Free Boundary Value Problems, Wiley-Interscience, New York, 1983.

D. Gilbarg and N. Trudinger, Elliptic Partial Differential Equations of Second Order, Springer Verlag, Berlin, 1983.

D. Hai and K. Schmitt, Existence and uniqueness results for nonlinear boundary value problems, Rocky Mtn. J. Math., 24 (1994), pp. 77–91.

P. Hartman, Ordinary Differential Equations, Birkh¨auser, Boston, second ed., 1982.

K. Hoffman, Analysis in Euclidean Spaces, Prentice Hall, Englewood Cliffs, 1975.

E. Hopf, An inequality for positive linear integral operators, J. Math. Mech., 12 (1963), pp. 683–692.

E. Hopf, Remarks on my paper ”An inequality for positive linear integral operators”, J. Math. Mech., 12 (1963), pp. 889–892.

J. Hutchinson, Fractals and self-similarity, Indiana Univ. J. Math., 30 (1981), pp. 713–747.

J. Jachymski, A short proof of the converse of the contraction mapping principle and some related results, Top. Meth. Nonl. Anal., 15 (2000), pp. 179–186.

H. Jeggle, Nichtlineare Funktionalanalysis, Teubner, 1979.

T. Kato, Perturbation Theory for Linear Operators, Springer Verlag, Berlin, 1966.

D. Kinderlehrer and G. Stampacchia, An Introduction to Variational Inequalities, Acad. Press, New York, 1980.

E. Kohlberg and J. W. Pratt, The contraction mapping approach to the Perron Frobenius theory: why Hilbert’s metric, Math. Oper. Res., 7 (1982), pp. 192–210.

M. A. Krasnosel’skii, Positive Solutions of Operator Equations, Noordhoff, Groningen, 1964.

V. Le and K. Schmitt, Global Bifurcation in Variational Inequalities: Applications to Obstacle and Unilateral Problems, Springer, New York, 1997.

S. Leon, Linear Algebra with Applications, Prentice Hall, Upper Saddle River, 1998.

F. Lettenmeyer, ¨ Uber die von einem Punkt ausgehenden Integralkurven einer Differentialgleichung zweiter Ordnung, Deutsche Math., 7 (1944), pp. 56–74.

J. L. Lions and E. Magenes, Non Homogeneous Boundary Value Problems and Applications, Springer, Berlin, 1972.

J. L. Lions and G. Stampacchia, Variational inequalities, Comm. Pure Appl. Math., 20 (1967), pp. 493–519.

J. Liouville, Sur l’equation aux derivees partielles d2 log dudv ±2 a2 = 0, J. Math. Pures Appl., 18 (1853), pp. 71–72.

J. Mawhin, Contractive mappings and periodically perturbed conservative systems, Arch. Math.2, Brno, 12 (1976), pp. 67–74.

J. Mawhin, Two point boundary value problems for nonlinear second order differential equations in Hilbert space, Tˆohoku Math. J., 32 (1980), pp. 225–233.

S. Nadler, Multivalued contraction mappings, Pac. J. Math., 30 (1969), pp. 475–488.

I. P. Natanson, Theory of Functions of a Real Variable, vol. 2, Ungar, New York, 1960.

H. O. Peitgen, H. J¨urgens, and D. Saupe, Chaos and Fractals: New Frontiers of Science, Springer, New York, 1992.

M. E. Picard, Trait´e d’analyse, Gauthiers-Villars, Paris, 2d ed., 1893.

M. E. Picard, Le¸cons sur quelques problˆemes aux limites de la th´eorie des ´equations diff´erentielles, Gauthiers-Villars, Paris, 1930.

A. Pietsch, History of Banach Spaces and Linear Operators, Birkhaeuser, 2007.

J. Rainermann and V. Stallbohm, Eine Anwendung des Edelsteinschen Fixpunktsatzes auf Integralgleichungen vom Abel-Liouvillschen typus, Arch. Math., 22 (1971), pp. 642–647.

H. L. Royden, Real Analysis, 3rd ed., Macmillan Publishing Co., New York, 1988.

W. Rudin, Real and Complex Analysis, McGraw Hill, New York, 1966.

T. Saaty, Modern Nonlinear Equations, Dover Publications, New York, 1981.

H. Schaefer, Topological Vector Spaces, McMillan, New York, 1967.

M. Schechter, Principles of Functional Analysis, Academic Press, New York, 1971.

K. Schmitt and H. Smith, Fredholm alternatives for nondifferentiable operators, Rocky Mtn. J. Math., (1982), pp. 817–841.

K. Schmitt and R. Thompson, Nonlinear Analysis and Differential Equations: An Introduction, Lecture Notes, University of Utah, Department of Mathematics, 1998.

R. E. Showalter, Hilbert Space Methods for Partial Differential Equations, Pitman, London, 1977.

G. Strang, Linear Algebra and its Applications, Harcourt, Brace, Jovanovich, San Diego, 3rd ed., 1988.

A. Taylor, Introduction to Functional Analysis, Wiley and Sons, New York, 1972.

B. Thomson, A. Bruckner, and J. Bruckner, Elementary Real Analysis, Prentice Hall, Upper Saddle River, 2001.

W. Walter, An elementary proof of the Cauchy-Kowalevsky theorem, Amer. Math. Monthly, 92 (1985), pp. 115–126.

J. Ward, The existence of periodic solutions for nonlinearly perturbed conservative systems, Nonlinear Analysis, TMA, 3 (1979), pp. 697–705.

J. Weissinger, Zur Theorie und Anwendung des Iterationsverfahrens, Math. Nachrichten, 8 (1952), pp. 193–212.

K. Yosida, Functional Analysis, 6th ed., Springer, New York, 1995.

Downloads

Published

2009-05-13

Issue

Section

Monographs

Categories

How to Cite

The contraction mapping principle and some applications. (2009). Electronic Journal of Differential Equations, 1(Mon. 01-09), Mon. 09, 1-90. https://doi.org/10.58997/ejde.mon.09