Qualitative properties of solutions to a reaction-diffusion equation with weighted strong reaction

Authors

  • Razvan Gabriel Iagar Univ. Rey Juan Carlos, Madrid, Spain
  • Ana I. Munoz Univ. Rey Juan Carlos, Madrid, Spain
  • Ariel Sanchez Univ. Rey Juan Carlos, Madrid, Spain

DOI:

https://doi.org/10.58997/ejde.2023.72

Keywords:

Reaction-diffusion equations; weighted reaction; strong reaction; Aronson-Benilan estimates

Abstract

We study the existence and qualitative properties of solutions to the Cauchy problem associated to the quasilinear reaction-diffusion equation $$ \partial_tu=\Delta u^m+(1+|x|)^{\sigma}u^p, $$ posed for \((x,t)\in\mathbb{R}^N\times(0,\infty)\), where \(m>1\), \(p\in(0,1)\) and \(\sigma>0\). Initial data are taken to be bounded, non-negative and compactly supported. In the range when \(m+p\geq2\), we prove existence of local solutions with a finite speed of propagation of their supports for compactly supported initial conditions. We also show in this case that, for a given compactly supported initial condition, there exist infinitely many solutions to the Cauchy problem, by prescribing the evolution of their interface. In the complementary range \(m+p<2\), we obtain new Aronson-Benilan estimates satisfied by solutions to the Cauchy problem, which are of independent interest as a priori bounds for the solutions. We apply these estimates to establish infinite speed of propagation of the supports of solutions if \(m+p<2\), that is, \(u(x,t)>0\) for any \(x\in\mathbb{R}^N\), \(t>0\), even in the case when the initial condition \(u_0\) is compactly supported.

For more information see https://ejde.math.txstate.edu/Volumes/2023/72/abstr.html

References

D. Andreucci, E. DiBenedetto; On the Cauchy problem and initial traces for a class of evolution equations with strongly nonlinear sources, Ann. Scuola Norm. Sup. Pisa, 18 (1991), 363-441.

D. Andreucci, A. F. Tedeev; Universal bounds at the blow-up time for nonlinear parabolic equations, Adv. Differential Equations, 10 (2005), no. 1, 89-120.

D. G. Aronson, Ph. B¢¥enilan; R¢¥egularit¢¥e des solutions de l¡¯¢¥equation des milieux poreux dans RN (French), CR Acad. Sci. Paris S¢¥er A, 288 (1979), 103-105.

D. G. Aronson, L. A. Caffarelli; The initial trace of a solution of the porous medium equation, Trans. Amer. Math. Soc., 280 (1983), no. 1, 351-366.

C. Bandle, H. Levine; On the existence and nonexistence of global solutions of reactiondiffusion equations in sectorial domains, Trans. Amer. Math. Soc., 316 (1989), 595-622.

P. Baras, R. Kersner; Local and global solvability of a class of semilinear parabolic equations, J. Differential Equations, 68 (1987), 238-252.

P. B¢¥enilan, M. G. Crandall, M. Pierre; Solutions of the porous medium in RN under optimal conditions on the initial values, Indiana Univ. Math. Jour., 33 (1984), no. 1, 51-87.

L. A. Caffarelli, J. L. Vazquez, N. I. Wolanski; Lipschitz continuity of solutions and interfaces of the N-dimensional porous medium equation, Indiana Univ. Math. J., 36 (1987), no. 2, 373-401.

E. DiBenedetto; Continuity of weak solutions to a general porous medium equation, Indiana Univ. Math. J., 32 (1983), no. 1, 83-118.

S. Filippas, A. Tertikas; On similarity solutions of a heat equation with a nonhomogeneous nonlinearity, J. Differential Equations, 165 (2000), no. 2, 468-492.

J.-S. Guo, C.-S. Lin, M. Shimojo; Blow-up behavior for a parabolic equation with spatially dependent coefficient, Dynam. Systems Appl., 19 (2010), no. 3-4, 415-433.

J.-S. Guo, C.-S. Lin, M. Shimojo; Blow-up for a reaction-diffusion equation with variable coefficient, Appl. Math. Lett., 26 (2013), no. 1, 150-153.

J.-S. Guo, M. Shimojo; Blowing up at zero points of potential for an initial boundary value problem, Commun. Pure Appl. Anal., 10 (2011), no. 1, 161-177.

J.-S. Guo, P. Souplet; Excluding blowup at zero points of the potential by means of Liouvilletype theorems, J. Differential Equations, 265 (2018), no. 10, 4942-4964.

R. G. Iagar, M. Latorre, A. Sanchez; Blow-up patterns for a reaction-diffusion equation with weighted reaction in general dimension, Adv. Differential Equations (accepted November 2022), Preprint ArXiv no. 2205.09407.

R. G. Iagar, A. I. Mu.noz, A. Sanchez; Self-similar blow-up patterns for a reaction-diffusion equation with weighted reaction in general dimension, Commun. Pure Appl. Analysis, 21 (2022), no. 3, 891-925.

R. G. Iagar, A. Sanchez; Blow up profiles for a quasilinear reaction-diffusion equation with weighted reaction with linear growth, J. Dynam. Differential Equations, 31 (2019), no. 4, 2061-2094.

R. G. Iagar, A. Sanchez; Blow up profiles for a reaction-diffusion equation with critical weighted reaction, Nonlinear Anal., 191 (2020), paper no. 111628, 24 pages.

R. G. Iagar, A. Sanchez; Self-similar blow-up profiles for a reaction-diffusion equation with strong weighted reaction, Adv. Nonl. Studies, 20 (2020), no. 4, 867-894.

R. G. Iagar, A. Sanchez; Blow up profiles for a quasilinear reaction-diffusion equation with weighted reaction, J. Differential Equations, 272 (2021), 560-605.

R. G. Iagar, A. Sanchez; Self-similar blow-up profiles for a reaction-diffusion equation with critically strong weighted reaction, J. Dynam. Differential Equations, 34 (2022), no. 2, 1139- 1172.

R. Iagar, A. Sanchez; Separate variable blow-up patterns for a reaction-diffusion equation with critical weighted reaction, Nonlinear Anal., 217 (2022), Article ID 112740, 33 pages.

O. A. Ladyzhenskaya, M. A. Solonnikov, N. N. Uraltseva; Linear and quasilinear equations of parabolic type, Transl. Math. Monographs, 23, Amer. Math. Society, Providence, 1968.

A. Mukai, Y. Seki; Refined construction of Type II blow-up solutions for semilinear heat equations with Joseph-Lundgren supercritical nonlinearity, Discrete Cont. Dynamical Systems, 41 (2021), no. 10, 4847-4885.

A. de Pablo; Large-time behaviour of solutions of a reaction-diffusion equation, Proc. Roy. Soc. Edinburgh Sect. A, 124 (1994), no. 2, 389-398.

A. de Pablo, J. L. Vazquez; The balance between strong reaction and slow diffusion, Comm. Partial Differential Equations, 15 (1990), no. 2, 159-183.

A. de Pablo, J. L. Vazquez; Travelling waves and finite propagation in a reaction-diffusion equation, J. Differential Equations, 93 (1991), no. 1, 19-61.

A. de Pablo, J. L. Vazquez; An overdetermined initial and boundary-value problem for a reaction-diffusion equation, Nonlinear Anal., 19 (1992), no. 3, 259-269.

R. G. Pinsky; Existence and nonexistence of global solutions for ut = ¥Äu + a(x)up in Rd, J. Differential Equations, 133 (1997), no. 1, 152-177.

R. G. Pinsky; The behavior of the life span for solutions to ut = ¥Äu + a(x)up in Rd, J. Differential Equations, 147 (1998), no. 1, 30-57.

Y.-W. Qi; The critical exponents of parabolic equations and blow-up in RN, Proc. Roy. Soc. Edinburgh Section A, 128 (1998), no. 1, 123-136.

P. Quittner, Ph. Souplet; Superlinear parabolic problems. Blow-up, global existence and steady states, Birkhauser Advanced Texts, Birkhauser Verlag, Basel, 2007.

P. E. Sacks; The initial and boundary problem for a class of degenerate parabolic equations, Comm. Partial Differential Equations, 8 (1983), no. 7, 693-733.

A. A. Samarskii, V. A. Galaktionov, S. P. Kurdyumov, A. P. Mikhailov; Blow-up in quasilinear parabolic problems, de Gruyter Expositions in Mathematics, 19, W. de Gruyter, Berlin, 1995.

R. Suzuki; Existence and nonexistence of global solutions of quasilinear parabolic equations, J. Math. Soc. Japan, 54 (2002), no. 4, 747-792.

J. L. Vazquez; The porous medium equation. Mathematical theory, Oxford Monographs in Mathematics, Oxford University Press, 2007.

Downloads

Published

2023-10-23

Issue

Section

Articles

Categories

How to Cite

Qualitative properties of solutions to a reaction-diffusion equation with weighted strong reaction. (2023). Electronic Journal of Differential Equations, 2023(01-87), No. 72, 1-21. https://doi.org/10.58997/ejde.2023.72