Multiple solutions for nonhomogeneous Schrodinger-Poisson system with p-Laplacian

Authors

  • Lanxin Huang Capital Normal Univ., Beijing, China
  • Jiabao Su Capital Normal Univ., Beijing, China

DOI:

https://doi.org/10.58997/ejde.2023.28

Keywords:

Nonhomogeneous Schrodinger-Poisson system, variational methods, multiple solutions

Abstract

This article concerns the existence of solutions to the Schrodinger-Poisson system $$\displaylines{ -\Delta_p u+|u|^{p-2}u+\lambda\phi u=|u|^{q-2}u+h(x) \quad \hbox{in }\mathbb{R}^3,\\ -\Delta \phi=u^2 \quad \hbox{in }\mathbb{R}^3, }$$ where \( 4/3 < p < 12/5 \), \( p < q < p^{*}=3p/(3-p) \), \(\Delta_p u =\hbox{div}(|\nabla u|^{p-2}\nabla u)\), \(\lambda >0\), and \(h \not= 0\). The multiplicity results are obtained by using Ekeland's variational principle and the mountain pass theorem.

For more information see https://ejde.math.txstate.edu/Volumes/2023/28/abstr.html

References

A. Ambrosetti, P. H. Rabinowitz; Dual variational methods in critical point theory and applications, J. Funct. Anal., 14 (1973), 349-381. https://doi.org/10.1016/0022-1236(73)90051-7

A. Azzollini; Concentration and compactness in nonlinear Schrödinger-Poisson system with a general nonlinearity, J. Differential Equations, 249 (2010), 1746-1763. https://doi.org/10.1016/j.jde.2010.07.007

A. Azzollini, P. d'Avenia, A. Pomponio; On the Schrödinger-Maxwell equations under the effect of a general nonlinear term, Ann. Inst. H. Poincaré Anal. Non Linéaire, 27 (2010), 779-791. https://doi.org/10.1016/j.anihpc.2009.11.012

A. Azzollini, A. Pomponio; Ground state solutions for the nonlinear Schrödinger-Maxwell equations, J. Math. Anal. Appl., 345 (2008), 90-108. https://doi.org/10.1016/j.jmaa.2008.03.057

V. Benci, D. Fortunato; An eigenvalue problem for the Schrödinger-Maxwell equations, Topol. Methods Nonlinear Anal., 11 (1998), 283-293. https://doi.org/10.12775/TMNA.1998.019

V. Benci, D. Fortunato; Solitary waves of the nonlinear Klein-Gordon equation coupled with the Maxwell equations, Rev. Math. Phys., 14 (2002), 409-420. https://doi.org/10.1142/S0129055X02001168

L. Boccardo, F. Murat; Almost everywhere convergence of the gradients of solutions to elliptic and parabolic equations, Nonlinear Anal., 19 (1992), 581-597. https://doi.org/10.1016/0362-546X(92)90023-8

S.-J. Chen, C.-L. Tang; Multiple solutions for nonhomogeneous Schrödinger-Maxwell and Klein-Gordon-Maxwell equations on R3, NoDEA Nonlinear Differential Equations Appl., 17 (2010), 559-574. https://doi.org/10.1007/s00030-010-0068-z

T. D'Aprile, D. Mugnai; Solitary waves for nonlinear Klein-Gordon-Maxwell and Schrödinger- Maxwell equations, Proc. Roy. Soc. Edinburgh Sect. A, 134 (2004), 893-906. https://doi.org/10.1017/S030821050000353X

P. d'Avenia; Non-radially symmetric solutions of nonlinear Schrödinger equation coupled with Maxwell equations, Adv. Nonlinear Stud., 2 (2002), 177-192. https://doi.org/10.1515/ans-2002-0205

Y. Du, J. Su, C. Wang; The Schrödinger-Poisson system with p-Laplacian, Appl. Math. Lett., 120 (2021), Paper No. 107286, 7 pp. https://doi.org/10.1016/j.aml.2021.107286

I. Ekeland; On the variational principle, J. Math. Anal. Appl., 47 (1974), 324-353. https://doi.org/10.1016/0022-247X(74)90025-0

L. -X. Huang, X. -P. Wu, C. -L. Tang; Multiple positive solutions for nonhomogeneous Schrödinger-Poisson systems with Berestycki-Lions type conditions, Electron. J. Differential Equations, 2021, Paper No.1, 14 pp.

L. Jeanjean; Existence of solutions with prescribed norm for semilinear elliptic equations, Nonlinear Anal., 28 (1997), 1633-1659. https://doi.org/10.1016/S0362-546X(96)00021-1

L. Jeanjean, S. Le Coz; An existence and stability result for standing waves of nonlinear Schrödinger equations, Adv. Differential Equations, 11 (2006), 813-840. https://doi.org/10.57262/ade/1355867677

Y. Jiang, Z. Wang, H. -S. Zhou; Multiple solutions for a nonhomogeneous Schrödinger- Maxwell system in R3, Nonlinear Anal., 83 (2013), 50-57. https://doi.org/10.1016/j.na.2013.01.006

S. Khoutir, H. Chen; Multiple nontrivial solutions for a nonhomogeneous Schrödinger-Poisson system in R3, Electron. J. Qual. Theory Differ. Equ., 2017, Paper No. 28, 17 pp.

E. H. Lieb, M. Loss; Analysis, American Mathematical Society, 2001. https://doi.org/10.1090/gsm/014

P. L. Lions; Symétrie et compacité dans les espaces de Sobolev, J. Funct. Anal., 49 (1982), 315-334. https://doi.org/10.1016/0022-1236(82)90072-6

S. Qu, X. He; Multiplicity of high energy solutions for fractional Schrödinger-Poisson systems with critical frequency, Electron. J. Differential Equations, 2022 (2022), no. 47, 1-21.

D. Ruiz; The Schrödinger-Poisson equation under the effect of a nonlinear local term, J. Funct. Anal., 237 (2006), 655-674. https://doi.org/10.1016/j.jfa.2006.04.005

A. Salvatore; Multiple solitary waves for a non-homogeneous Schrödinger-Maxwell system in R3, Adv. Nonlinear Stud., 6 (2006), 157-169. https://doi.org/10.1515/ans-2006-0203

J. Su, Z. -Q. Wang, M. Willem; Weighted Sobolev embedding with unbounded and decaying radial potential, J. Differential Equations, 238 (2007), 201-219. https://doi.org/10.1016/j.jde.2007.03.018

J. Su, Z. -Q. Wang; Sobolev type embedding and quasilinear elliptic equations with radial potentials, J. Differential Equations, 250 (2011), 223-242. https://doi.org/10.1016/j.jde.2010.08.025

J. Sun, S. Ma; Ground state solutions for some Schrödinger-Poisson systems with periodic potentials, J. Differential Equations, 260 (2016), 2119-2149. https://doi.org/10.1016/j.jde.2015.09.057

J. Sun, T. F. Wu, Z. Feng; Multiplicity of positive solutions for a nonlinear Schrödinger- Poisson system, J. Differential Equations, 260 (2016), 586-627. https://doi.org/10.1016/j.jde.2015.09.002

L. Wang, S. Ma, N. Xu; Multiple solutions for nonhomogeneous Schrödinger-Poisson equations with sign-changing potential, Acta Math. Sci. Ser. B, 37 (2017), 555-572. https://doi.org/10.1016/S0252-9602(17)30021-8

M. Willem; Minimax theorems, Birkhäuser Boston, Inc., Boston, 1996. https://doi.org/10.1007/978-1-4612-4146-1

M. Willem; Functional analysis. Fundamentals and applications, Birkhäuser/Springer, New York, 2013. https://doi.org/10.1007/978-1-4614-7004-5

Y. Ye; Multiple positive solutions for nonhomogeneous Schrödinger-Poisson system in R3, Lith. Math. J., 60 (2020), 276-287. https://doi.org/10.1007/s10986-020-09476-8

L. -F. Yin, X. -P. Wu, C. -L. Tang; Ground state solutions for an asymptotically 2-linear Schrödinger-Poisson system, Appl. Math. Lett., 87 (2019), 7-12. https://doi.org/10.1016/j.aml.2018.07.017

J. Zhang, J. M. do Ó, M. Squassina; Schrödinger-Poisson systems with a general critical nonlinearity, Commun. Contemp. Math., 19 (2017), no. 4, 1650028, 16 pp. https://doi.org/10.1142/S0219199716500280

Q. Zhang, F. Li, Z. Liang; Existence of multiple positive solutions to nonhomogeneous Schrödinger-Poisson system, Appl. Math. Comput., 259 (2015), 353-363. https://doi.org/10.1016/j.amc.2015.02.044

Downloads

Published

2023-03-11

Issue

Section

Articles

Categories

How to Cite

Multiple solutions for nonhomogeneous Schrodinger-Poisson system with p-Laplacian. (2023). Electronic Journal of Differential Equations, 2023(01-87), No. 28, 1-14. https://doi.org/10.58997/ejde.2023.28