Concentration of nodal solutions for semiclassical quadratic Choquard equations

Authors

  • Lu Yang Yunnan Univ., Kunming, China
  • Xiangqing Liu Yunnan Normal Univ., Kunming, China
  • Jianwen Zhou Yunnan Univ., Kunming, China

DOI:

https://doi.org/10.58997/ejde.2023.75

Abstract

In this article concerns the semiclassical Choquard equation \(-\varepsilon^2 \Delta u +V(x)u = \varepsilon^{-2}( \frac{1}{|\cdot|}* u^2)u\) for \(x \in \mathbb{R}^3\) and small \(\varepsilon\). We establish the existence of a sequence of localized nodal solutions concentrating near a given local minimum point of the potential function \(V\), by means of the perturbation method and the method of invariant sets of descending flow.

For more information see https://ejde.math.txstate.edu/Volumes/2023/75/abstr.html

References

N. Ackermann; On a periodic Schro ̈dinger equation with nonlocal superlinear part. Math. Z., 248 (2004), 423–443.

C. O. Alves, H. Luo, M. Yang; Ground state solutions for a class of strongly indefinite Choquard equations. Bull. Malays. Math. Sci. Soc., 43 (2020), 3271–3304.

C. O. Alves, A. B. N ́obrega, M. Yang; Multi-bump solutions for Choquard equation with deepening potential well. Calc. Var. Partial Differential Equations, 55 (2016), 1–28.

J. Byeon, Z. Q. Wang; Standing waves with a critical frequency for nonlinear Schrodinger equations. Arch. Ration. Mech. Anal., 165 (2002), 295–316.

D. Cassani, J. Van Schaftingen, J. Zhang; Ground states for Choquard type equations with Hardy-Littlewood-Sobolev lower critical exponent. Proc. Roy. Soc. Edinburgh Sect. A, 150 (2020), 1377–1400.

S. Chen, Z. Q. Wang; Localized nodal solutions of higher topological type for semiclassical nonlinear Schro ̈dinger equations. Calc. Var. Partial Differential Equations, 56 (2017), 1–26.

S. Cingolani, K. Tanaka; Semi-classical states for the nonlinear Choquard equations: ex- istence, multiplicity and concentration at a potential well. Rev. Mat. Iberoam., 35 (2019), 1885–1924.

M. Clapp, D. Salazar; Positive and sign changing solutions to a nonlinear Choquard equation. J. Math. Anal. Appl., 407 (2013), 1–15.

F. Gao, E. D. da Silva, M. Yang, J. Zhou; Existence of solutions for critical Choquard equations via the concentration-compactness method. Proc. Roy. Soc. Edinburgh Sect. A, 150 (2020), 921–954.

F. Gao, M. Yang; On nonlocal Choquard equations with Hardy-Littlewood-Sobolev critical exponents. J. Math. Anal. Appl., 448 (2017), 1006–1041.

M. Ghimenti, V. Moroz, J. Van Schaftingen; Least action nodal solutions for the quadratic Choquard equation. Proc. Amer. Math. Soc., 145 (2017), 737–747.

M. Ghimenti, J. Van Schaftingen; Nodal solutions for the Choquard equation. J. Funct. Anal., 271 (2016), 107–135.

C. Gui, H. Guo; On nodal solutions of the nonlinear Choquard equation. Adv. Nonlinear Stud., 19 (4)(2019), 677–691.

L. Guo, T. Hu, S. Peng, W. Shuai; Existence and uniqueness of solutions for Choquard equation involving Hardy-Littlewood-Sobolev critical exponent. Calc. Var. Partial Differential Equations, 58 (2019), 1–34.

R. He, X. Liu; Localized nodal solutions for semiclassical Choquard equations. J. Math. Phys., 62 (2021), 091511.

Z. Huang, J. Yang, W. Yu; Multiple nodal solutions of nonlinear Choquard equations. Electron. J. Differential Equations, 268 (2017), 1–18.

X. Li, S. Ma; Choquard equations with critical nonlinearities. Commun. Contemp. Math., 22 (2020), 1950023, 28.

E. H. Lieb; Existence and uniqueness of the minimizing solution of Choquard’s nonlinear equation. Studies Appl. Math., 57 (1976/77), 93–105.

E. H. Lieb, M. Loss; Analysis, second ed., in Graduate Studies in Mathematics, vol. 14, American Mathematical Society, Providence, RI, 2001.

P. L. Lions; The Choquard equation and related questions. Nonlinear Anal., 4(1980), 1063–1072.

J. Liu, X. Liu, Z. Q. Wang; Sign-changing solutions for coupled nonlinear Schrodinger equations with critical growth. J. Differential Equations, 261 (2016), 7194–7236.

J. Liu, X. Liu, Z. Q. Wang; Multiple mixed states of nodal solutions for nonlinear Schrodinger systems. Calc. Var. Partial Differential Equations, 52 (2015), 565–586.

X. Liu; Localized nodal solutions for system of critical Choquard equations. Commun. Non- linear Sci. Numer. Simul., 121 (2023), 107190.

X. Liu, J. Liu, Z. Q. Wang; Quasilinear elliptic equations via perturbation method. Proc. Amer. Math. Soc., 141 (2013), 253–263.

L. Ma, L. Zhao; Classification of positive solitary solutions of the nonlinear Choquard equa- tion. Arch. Ration. Mech. Anal., 195 (2010), 455–467.

V. Moroz, J. Van Schaftingen; Groundstates of nonlinear Choquard equations: existence, qualitative properties and decay asymptotics. J. Funct. Anal., 265 (2013), 153–184.

V. Moroz, J. Van Schaftingen; Groundstates of nonlinear Choquard equations: Hardy- Littlewood-Sobolev critical exponent. Commun. Contemp. Math., 17 (2015), 1550005, 12.

V. Moroz, J. Van Schaftingen; Semi-classical states for the Choquard equation. Calc. Var. Partial Differential Equations, 52 (2015), 199–235.

I. M. Moroz, R. Penrose, P. Tod; Spherically-symmetric solutions of the Schrodinger-Newton equations. Class. Quantum Gravity, 15 (1998), 2733–2742.

S. I. Pekar; Untersuchungen u ̈ber die elektronentheorie der kristalle. De Gruyter, 1954.

D. Qin, V. D. Ra ̆dulescu, X. Tang; Ground states and geometrically distinct solutions for periodic Choquard-Pekar equations. J. Differential Equations, 275 (2021), 652–683.

D. Ruiz, J. Van Schaftingen; Odd symmetry of least energy nodal solutions for the Choquard equation. J. Differential Equations, 264 (2018), 1231–1262.

K. Tintarev, K. H. Fieseler; Concentration compactness. Functional-analytic grounds and applications. Imperial College Press, London, 2007.

B. Zhang, X. Liu; Localized nodal solutions for semiclassical quasilinear Choquard equations with subcritical growth. Electron. J. Differential Equations, 11 (2022), 1–29.

C. L. Xiang; Uniqueness and nondegeneracy of ground states for Choquard equations in three dimensions. Calc. Var. Partial Differential Equations, 55 (2016), 1–25.

C. X. Zhang, Z.-Q. Wang. Concentration of nodal solutions for logarithmic scalar field equations. J. Math. Pures Appl., 135 (2020), 1–25.

Downloads

Published

2023-10-30

Issue

Section

Articles

Categories

How to Cite

Concentration of nodal solutions for semiclassical quadratic Choquard equations. (2023). Electronic Journal of Differential Equations, 2023(01-87), No. 75, 1-20. https://doi.org/10.58997/ejde.2023.75