Variety of solutions and dynamical behavior for YTSF equations

Authors

  • Wei Chen Univ. of Science and Technology, Hefei, Anhui, China

DOI:

https://doi.org/10.58997/ejde.2023.82

Keywords:

YTSF equation; symmetry reduction; two-lump wave; aggregation; interaction wave.

Abstract

We construct non-homogeneous polynomial lump wave solutions of the Yu-Toda-Sasa-Fukuyama (YTSF) equation, based on a bilinear approach, enriching the formal diversity of lump waves. By studying the interaction between the lump solutions of the YTSF equation and the solitary wave solutions, we find a new aggregation effect and elastic collision effect. We obtain exact solutions, such as the solution of separated variables and periodic nonlinear wave solutions, by applying the Lie symmetry group method and the bilinear method.

For more information see https://ejde.math.txstate.edu/Volumes/2023/82/abstr.html

References

M. J. Ablowitz, A. I. Nachman; Multidimensional nonlinear evolution equations and inverse scattering, Phys. D., 18 (1986), 223-241.

S. J. Chen, Y. H. Yin, W. X. Ma, X. Lšu; Abundant exact solutions and interaction phenomena of the (2+1)-dimensional YTSF equation, Anal. Math. Phys., 9 (2019), 2329-2344.

Z. D. Dai, J. Liu, D. L. Li; Applications of HTA and EHTA to YTSF Equation, Appl. Math. Comput., 207 (2009), 360-364.

E. G. Fan; Extended tanh-function method and its applications to nonlinear equations, Phys. Lett. A., 277 (2000), 212-218.

M. Foroutan, J. Manafian, A. Ranjbaran; Lump solution and its interaction to (3+1)-D potential-YTSF equation, Nonlinear Dynam., 92 (2018), 2077-2092.

Y. F. Guo, Z. D. Dai, C. X. Guo; Lump solutions and interaction solutions for (2 + 1)- dimensional kpI equation, Front. Math. China., 17 (2022), 875-886.

G. Gao; A theory of interaction between dissipation and dispersion for turbulence, Sci. China. Ser. A., 28 (1985), 616-627.

M. B. Hossen, H. Roshid, M. Z. Ali; Characteristics of the solitary waves and rogue waves with interaction phenomena in a (2+1)-dimensional Breaking Soliton equation, Phys. Lett. A., 382 (2018), 1268-1274.

Y. J. Hu, H. L. Chen, Z. D. Dai; New kink multi-soliton solutions for the (3+1)-dimensional potential-Yu-Toda-Sasa-Fukuyama equation, Appl. Math. Comput., 234 (2014), 548-556.

R. Hirota, Y. Ohta; Hierarchies of coupled soliton equations. I., J. Phys. Soc. Japan., 60 (1991), 798-809.

M. Jimbo, T. Miwa; Solitons and infinite-dimensional Lie algebras, Publ. Res. Inst. Math. Sci., 19 (1983), 943-1001.

V. Jadaun, N. R. Singh; Soliton solutions of generalized (3+1)-dimensional Yu-Toda-Sasa- Fukuyama equation using Lie symmetry analysis, Anal. Math. Phys., 10 (2020), 24.

S. D. Liu, S. K. Liu; KdV-Burgers equation modelling of turbulence, Sci. Sin. A., 35 (1992) 576-586.

A. V. Lebedev, R. M. Fedorova; Elliptic functions and elliptic integrals, American Mathematical Society, (1960).

E. J. Parkes, B. R. Duffy, P. C. Abbott; The Jacobi elliptic-function method for finding periodic-wave solutions to nonlinear evolution equations, Phys. Lett. A., 295 (2002). 280- 286.

S. Sahoo, S. Saha Ray; Lie symmetry analysis and exact solutions of (3+1) dimensional Yu- Toda-Sasa-Fukuyama equation in mathematical physics, Comput. Math. Appl., 73 (2017), 253-260.

G. B. Whitham; Linear and Nonlinear Waves, New York, Springer, 1974.

J. Weiss, M. Tabor, G. Carnevale; The PainlevŽe property for partial differential equations, J. Math. Phys., 24 (1983), 522-526.

A. M.Wazwaz; Multiple-soliton solutions for the Calogero-Bogoyavlenskii-Schiff, Jimbo-Miwa and YTSF equations, Appl. Math. Comput., 203 (2008), 592-597.

S. J. Yu, K. Toda, N. Sasa, T. Fukuyama; N soliton solutions to the Bogoyavlenskii-Schiff equation and a quest for the soliton solution in (3+1) dimensions, J. Phys. A., 31 ( 1998), 3337-3347.

H. M. Yin, B. Tian, J. Chai, X. Y. Wu, W. R. Sun; Solitons and bilinear Bšacklund transformations for a (3+1)-dimensional Yu-Toda-Sasa-Fukuyama equation in a liquid or lattice, Appl. Math. Lett., 58 (2016), 178-183.

Z. Y. Yan; New families of nontravelling wave solutions to a new (3+1)-dimensional potential- YTSF equation, Phys. Lett. A., 318 (2003), 78-83.

Z. L. Zhao, L. C. He; Multiple lump solutions of the (3+1)-dimensional potential Yu-Toda- Sasa-Fukuyama equation, Appl. Math. Lett., 95 (2019), 114-121.

Downloads

Published

2023-12-10

Issue

Section

Articles

Categories

How to Cite

Variety of solutions and dynamical behavior for YTSF equations. (2023). Electronic Journal of Differential Equations, 2023(01-87), No. 82, 1-16. https://doi.org/10.58997/ejde.2023.82