Asymptotic behavior of stochastic functional differential evolution equation

Authors

  • Jason Clark Oregon State Univ., Corvallis, OR, USA
  • Oleksandr Misiats Virginia Commonwealth Univ., Richmond, USA
  • Viktoriia Mogylova Igor Sikorsky Kyiv Polytechnic Institute, Ukraine
  • Oleksandr Stanzhytskyi Taras Shevchenko National Univ. of Kyiv, Ukraine

DOI:

https://doi.org/10.58997/ejde.2023.35

Keywords:

Stochastic integral, mild solution, semigroup, white noise, delay differential equation, invariant measure

Abstract

In this work we study the long time behavior of nonlinear stochastic functional-differential equations in Hilbert spaces. In particular, we start with establishing the existence and uniqueness of mild solutions. We proceed with deriving a priory uniform in time bounds for the solutions in the appropriate Hilbert spaces. These bounds enable us to establish the existence of invariant measure based on Krylov-Bogoliubov theorem on the tightness of the family of measures. Finally, under certain assumptions on nonlinearities, we establish the uniqueness of invariant measures.

For more information see https://ejde.math.txstate.edu/Volumes/2023/35/abstr.html

References

J. F. M. Al-Omari, S. A. Gourley; A nonlocal reaction-diffusion model for a single species with stage structure and distributed maturation delay. European J. Appl. Math., 16(1):37-51, 2005. https://doi.org/10.1017/S0956792504005716

S. Assing, R. Manthey; Invariant measures for stochastic heat equations with unbounded coefficients. Stochastic Process. Appl., 103(2):237-256, 2003. https://doi.org/10.1016/S0304-4149(02)00211-9

O. Butkovsky, M. Scheutzow; Invariant measures for stochastic functional differential equations. Electron. J. Probab., 22, 2017. https://doi.org/10.1214/17-EJP122

Ye. Carkov; Random Perturbations of Functional Differential Equations. Riga, 1989.

S. Cerrai; Differentiability of Markov semigroups for stochastic reaction-diffusion equations and applications to control. Stochastic Process. Appl., 83(1):15-37, 1999. https://doi.org/10.1016/S0304-4149(99)00014-9

Anna Chojnowska-Michalik; Representation theorem for general stochastic delay equations. Bull. Acad. Polon. Sci. Sér. Sci. Math. Astronom. Phys., 26(7):635-642, 1978.

P. Chow; Stochastic partial differential equations. Chapman & Hall/CRC Applied Mathematics and Nonlinear Science Series. Chapman & Hall/CRC, Boca Raton, FL, 2007.

J. Cui, L. Yan, X. Sun; Existence and stability for stochastic partial differential equations with infinite delay. Abstr. Appl. Anal., 2014. https://doi.org/10.1155/2014/235937

G. Da Prato, J. Zabczyk; Stochastic equations in infinite dimensions, volume 44 of Encyclopedia of Mathematics and its Applications. Cambridge University Press, Cambridge, 1992. https://doi.org/10.1017/CBO9780511666223

G. Da Prato, J. Zabczyk; Ergodicity for infinite-dimensional systems, volume 229 of London Mathematical Society Lecture Note Series. Cambridge University Press, Cambridge, 1996. https://doi.org/10.1017/CBO9780511662829

D. Dawson; Stochastic evolution equations. Math. Biosci., 15:287-316, 1972. https://doi.org/10.1016/0025-5564(72)90039-9

M. Hairer, J. Mattingly, M. Scheutzow; Asymptotic coupling and a general form of Harris' theorem with applications to stochastic delay equations. Probab. Theory Related Fields, 149(1-2):223-259, 2011. https://doi.org/10.1007/s00440-009-0250-6

J. Hale; Theory of functional differential equations. Springer-Verlag, New York-Heidelberg, second edition, 1977. Applied Mathematical Sciences, Vol. 3. https://doi.org/10.1007/978-1-4612-9892-2_3

M. Gurtin, A. Pipkin; A general theory of heat conduction with finite wave speeds. Arch. Rational Mech. Anal., 31(2):113-126, 1968. https://doi.org/10.1007/BF00281373

A. Ivanov, Y. Kazmerchuk, A. Swishchuk; Theory, stochastic stability and applications of stochastic delay differential equations: a survey of results. Differential Equations Dynam. Systems, 11(1-2):55-115, 2003.

K. Kenzhebaev, A. Stanzhytskyi, A. Tsukanova; Existence and uniqueness results, and the markovian property of solutions for a neutral delay stochastic reaction-diffusion equation in entire space. Dynam. Systems Appl., 28(1):19-46, 2019. https://doi.org/10.12732/dsa.v28i1.2

N. Kryloff, N. Bogoliouboff; La théorie générale de la mesure dans son application à l'étude des systèmes dynamiques de la mécanique non linéaire. Ann. of Math. (2), 38(1):65-113, 1937. https://doi.org/10.2307/1968511

O. Ladyzhenskaya, V. Solonnikov, N. Uraltseva; Linear and quasilinear equations of parabolic type, volume 23 of Translations of mathematical monographs. AMS, Providence, RI, 1968.

R. Manthey, T. Zausinger; Stochastic evolution equations in L2ν . Stochastics Stochastics Rep., 66(1-2):37-85, 1999. https://doi.org/10.1080/17442509908834186

O. Misiats, O. Stanzhytskyi, N. Yip; Existence and uniqueness of invariant measures for stochastic reaction-diffusion equations in unbounded domains. J. Theor. Probab., 29(3):996- 1026, 2016. https://doi.org/10.1007/s10959-015-0606-z

O. Misiats, O. Stanzhytskyi, N. Yip; Asymptotic behavior and homogenization of invariant measures. Stochastics and Dynamics, 19(02), 2019. https://doi.org/10.1142/S0219493719500151

O. Misiats, O. Stanzhytskyi, N. Yip; Invariant measures for reaction-diffusion equations with weakly dissipative nonlinearities. Stochastics, DOI: 10.1080/17442508.2019.1691212, 2019. https://doi.org/10.1080/17442508.2019.1691212

R. Ovsepian, A. Pelczyn'ski; On the existence of a fundamental total and bounded biorthogonal sequence in every separable Banach space, and related constructions of uniformly bounded orthonormal systems in L2. Studia Math., 54(2):149-159, 1975. https://doi.org/10.4064/sm-54-2-149-159

A. Pazy; Semigroups of linear operators and applications to partial differential equations, volume 44 of Applied Mathematical Sciences. Springer-Verlag, New York, 1983. https://doi.org/10.1007/978-1-4612-5561-1

W. Ruess; Existence of Solutions to Partial Functional Differential Equations with Delay, volume 178 of Lecture Notes Pure Appl. Math. Marcel-Dekker: New York, (1996) 259-288.

A. Samoilenko, N. I. Mahmudov, A. N. Stanzhitskii; Existence, uniqueness, and controllability results for neutral FSDES in Hilbert spaces. Dynam. Systems Appl., 17(1):53-70, 2008.

S. Sayed, O. Misiats, J. Clark; Electrical control of effective mass, damping, and stiffness of mems devices. IEEE Sensors Journal, 17(5):1363-1372, 2017. https://doi.org/10.1109/JSEN.2016.2640290

O. Stanzhytskyi, V. Mogilova, A. Tsukanova; On comparison results for neutral stochastic differential equations of reaction-diffusion type. Modern Mathematics and Mechanics: Understanding Complex Systems, pages 351-395, 2019. https://doi.org/10.1007/978-3-319-96755-4_19

T. Taniguchi, K. Liu, A. Truman; Existence, uniqueness, and asymptotic behavior of mild solutions to stochastic functional differential equations in hilbert spaces. Journal of Differential Equations, 181:72 - 91, 2002. https://doi.org/10.1006/jdeq.2001.4073

K. Wang, M. Fan; Phase Space Theory and Their Application of Functional Differential Equations. Science Press, Beijing, 2009.

A. Stanzhytsky, O. Misiats, O. Stanzhytskyi; Invariant measure for neutral stochastic functional differential equations with non-lipschitz coefficients. Evolution Equations and Control Theory, https://doi.org/10.3934/eect.2022005

Downloads

Published

2023-04-12

Issue

Section

Articles

Categories

How to Cite

Asymptotic behavior of stochastic functional differential evolution equation. (2023). Electronic Journal of Differential Equations, 2023(01-87), No. 35, 1-21. https://doi.org/10.58997/ejde.2023.35