Signorini's problem for the Bresse beam model with localized Kelvin-Voigt dissipation

Authors

  • Jaime E. Munoz Rivera National Laboratory for Sci. Computation, Rio de Janeiro, Brazil
  • Carlos A. da Costa Baldez Federal Univ. of Para, Brazil
  • Sebastiao M. S. Cordeiro Federal Univ. of Para, Brazil

DOI:

https://doi.org/10.58997/ejde.2024.17

Keywords:

Bresse beams; dynamic vibrations; contact problem; localized dissipation; asymptotic behavior; numerical experiment

Abstract

We prove the existence of a global solution to Signorini's problem for the localized viscoelastic Bresse beam model (circular arc) with continuous and discontinuous constitutive laws. We show that when the constitutive law is continuous, the solution decays exponentially to zero, and when the constitutive law is discontinuous the solution decays only polynomially to zero. The method we use for proving our result is different the others already used in Signorini's problem and is based on approximations through a hybrid model. Also, we present some numerical results using discrete approximations in time and space, based on the finite element method on the spatial variable and the implicit Newmark method to the discretized the temporal variable.

For more information see https://ejde.math.txstate.edu/Volumes/2024/17/abstr.html

References

Avalos, G. G.; Munoz Rivera, J. E.; Vera Villagran, O.; Stability in Thermoviscoelasticity with Second Sound, Appl. Math Optim., Volume 1, No. 1 (2019), 1-2. doi: 10.1007/s00245- 018-9495-8

Andrews, K. T.; Shillor, M.; Wright, S.; On the dynamic vibrations of a elastic beam in frictional contact with a rigid obstacle, Journal of Elasticity, 42 (1996) 1-30. https://doi.org/10.1007/BF00041221

Borichev, A.; Tomilov, Y.; Optimal polynomial decay of functions and operator semigroups, Math. Annalen, 347 (2009) 455-478. https://doi.org/10.1007/s00208-009-0439-0

Copetti, M. I. M.; Elliot, C. M.; A one dimensional quasi-static contact problem in linear thermoelasticity, Eur. J. Appl. Math., 4 (1993) 151-174. https: //doi.org/10.1017/S0956792500001042

Dumont, Y.; Paoli, L.; Vibrations of a beam between obstacles: convergence of a fully discretized appproximation. ESAIM: Math. Model. Numer. Anal., 40 (2006) 705-734. https://doi.org/10.1051/m2an:2006031

Hughes, T. J. R.; The finite Element Method: Linear Static and Dynamic Finite Elelment Analysis, Dover Publications Inc., 2000.

Hughes, T. J. R.; Taylor, R. L.; Kanoknukulcahi, W.; A simple and efficient finite element method for plate bending, Internat. J. Numer. Met. Engrg., 11 (1977) 1529-1543. https: //doi.org/10.1002/nme.1620111005

Kim, J. U.; A boundary thin obstacle problem for a wave equation, Comm. Partial Diff. Equations, Vol. 14, (8-9), pages 1011-1026, (1989). doi:10.1080/03605308908820640

Kutter, K. L.; Shillor, M.; Vibrations of a Beam Between two stops, Dynamics of Continuous and Discrete and Impulsive Systems. Ser. B Applications and Algorithms 8 (2001) 93-110.

Lions, J. L.; Quelques mŽethodes de resolution des problemes aux limites non lineaires, Dunod, Paris, 1969.

Loula, A. F. D.; Franca, L. P.; Hughes, T. J .R.; Miranda, I.; Stability, convergence and Accuracy of a New Finite Element Method for the Circular Arch Problem, Comp. Meth. Appl. Mechanics and Engineering, 63 (1987) 281-303. https://doi.org/10.1016/0045-7825(87)90074- 0

Munoz Rivera, J. E.; da Costa Baldez, C. A.; The hybrid-penalized method for the Timoshenkos beam, Journal of Mathematical Analysis and Applications, 458 (2018) 1274-1291. https://doi.org/10.1016/jmaa:2017.10.22

Munoz Rivera, J. E.; da Costa Baldez, C. A.; Stability for a boundary contact problem in thermoelastic Timoshenkos beam, Z. Angew. Math. Phys. Volume L, No. 1, 1-18 (2021). doi: 10.1007/s00033-020-01

Munoz Rivera, J. E.; Villagran, O. V.; Sepulveda, M.; Stability to localized viscoelastic transmission problem, Communications in Partial Differential Equations, 43:5 (2018) 821-838. https://doi.org/10.1080/03605302.2018.1475490

Newmark, M. N.; A method of computation for structural dynamics, J. Engrg. Mech., 85 (1959) 67-94.

Pazy A.; Semigroup of linear operators and applications to partial diferential equations, Springer-Verlag. New York, 1983.

Prathap, G.; Bhashyam, G. R.; Reduced integration and the shear-flexible beam element, Internat.J. Numer. Methods Engrg., 18 (1982), 195-210. https: //doi.org/10.1002/nme.1620180205

Pruss, J.; On the spectrum of C0-semigroups, Trans. AMS. 284 (1984) 847-857. https://doi.org/10.2307/1999112

Rifo, S.; Vera , O.; Munoz Rivera, J. E.; The lack of exponential stability of the hybrid Bresse system, Journal of Mathematical Analysis and Applications, Volume 436, No. 1 (2015), 1-15. https://doi.org/10.1016/j.jmaa.2015.11.041

Downloads

Published

2024-02-13

Issue

Section

Articles

Categories

How to Cite

Signorini’s problem for the Bresse beam model with localized Kelvin-Voigt dissipation. (2024). Electronic Journal of Differential Equations, 2024(01-??), No. 17, 1-24. https://doi.org/10.58997/ejde.2024.17