Localized nodal solutions for semiclassical Choquard equations with critical growth

Authors

  • Bo Zhang Sichuan Univ. of Arts and Science, Dazhou, China
  • Wei Zhang Yunnan Univ. of Finance and Economics, Kunming, China

DOI:

https://doi.org/10.58997/ejde.2024.19

Keywords:

Choquard equation; sign-changing solutions; nodal solutions; variational perturbation method; semiclassical states

Abstract

In this article, we study the existence of localized nodal solutions for semiclassical Choquard equation with critical growth $$ -\epsilon^2 \Delta v +V(x)v = \epsilon^{\alpha-N}\Big(\int_{R^N} \frac{|v(y)|^{2_\alpha^*}}{|x-y|^{\alpha}}\,dy\Big) |v|^{2_\alpha^*-2}v +\theta|v|^{q-2}v,\; x \in R^N, $$ where \(\theta>0\), \(N\geq 3\), \(0< \alpha<\min \{4,N-1\},\max\{2,2^*-1\}< q< 2 ^*\), \(2_\alpha^*= \frac{2N-\alpha}{N-2}\), \(V\) is a bounded function. By the perturbation method and the method of invariant sets of descending flow, we establish for small \(\epsilon\) the existence of a sequence of localized nodal solutions concentrating near a given local minimum point of the potential function \(V\).

For more information see https://ejde.math.txstate.edu/Volumes/2024/19/abstr.html

References

C. O. Alves, F. Gao, M. Squassina, M. Yang; Singularly perturbed critical Choquard equations. J. Differential Equations, 263 (2017), 3943-3988.

C. O. Alves, A. B. NŽobrega, M. Yang; Multi-bump solutions for Choquard equation with deepening potential well. Calc. Var. Partial Differential Equations, 55 (2016), no. 48, 1-28.

C. O. Alves, M. Yang; Existence of semiclassical ground state solutions for a generalized Choquard equation. J. Differential Equations, 257 (2014), 4133-4164.

J. Byeon, Z.-Q. Wang; Standing waves with a critical frequency for nonlinear Schršodinger equations. II. Calc. Var. Partial Differential Equations, 18 (2003), 207-219.

D. Cassani, J. Zhang; Ground states and semiclassical states of nonlinear Choquard equations involving of Hardy-Littlewood-Sobolev critical growth. (arXiv:1611.02919v1).

D. Cassani, J. Zhang; Choquard-type equations with Hardy-Littlewood-Sobolev uppercritical growth. Adv. Nonlinear Anal., 8 (2019), 1184-1212.

S. Chen, Z.-Q. Wang; Localized nodal solutions of higher topological type for semiclassical nonlinear Schršodinger equations. Calc. Var. Partial Differential Equations, 56 (2017), no. 1, 1-26.

S. Cingolani, K. Tanaka; Semi-classical states for the nonlinear Choquard equations: existence, multiplicity and concentration at a potential well. Rev. Mat. Iberoam., 35 (2019), 1885-1924.

Y. Ding, F. Gao, M. Yang; Semiclassical states for Choquard type equations with critical growth: critical frequency case. Nonlinearity, 33 (2020), 6695-6728.

F. Gao, M. Yang, J. Zhou; Existence of multiple semiclassical solutions for a critical Choquard equation with indefinite potential. Nonlinear Anal., 195 (2020), no. 111817, 1-20.

H. Genev, G. Venkov; Soliton and blow-up solutions to the time-dependent Schršodinger- Hartree equation. Discrete Contin. Dyn. Syst. Ser. S, 5 (2012), 903-923.

M. Ghimenti, V. Moroz, J. V. Schaftingen; Least action nodal solutions for the quadratic Choquard equation. Proc. Amer. Math. Soc., 145 (2017), 737-747.

M. Ghimenti, J. V. Schaftingen; Nodal solutions for the Choquard equation. J. Funct. Anal., 271 (2016), 107-135.

C. Gui, H. Guo; On nodal solutions of the nonlinear Choquard equation. Adv. Nonlinear Stud., 19(2019), 677-691.

C. Gui, H. Guo; Nodal solutions of a nonlocal Choquard equation in a bounded domain. Commun. Contemp. Math., 23 (2021), no. 1950067, 1-33.

R. He; Infinitely many solutions for the BrŽezis-Nirenberg problem with nonlinear Choquard equations. J. Math. Anal. Appl., 515 (2022), no. 126426, 1-24.

R. He, X. Liu; Localized nodal solutions for semiclassical Choquard equations. J. Math. Phys., 62 (2021), no. 091511, 1-21.

K. Jin, Z. Shen; Semiclassical solutions of the Choquard equations in R3. J. Appl. Anal. Comput., 11 (2021), 568-586.

X. Kang, J. Wei; On interacting bumps of semi-classical states of nonlinear Schršodinger equations. Adv. Differential Equations, 5 (2000), 899-928.

T. Kilpelšainen, J. MalŽy; The Wiener test and potential estimates for quasilinear elliptic equations. Acta Math., 172 (1994), 137-161.

E. H. Lieb; Existence and uniqueness of the minimizing solution of Choquards nonlinear equation. Studies in Appl. Math., 57 (1976/77), 93-105.

E. H. Lieb, M. Loss; Analysis 2nd ed. Graduate Studies in Mathematics, 14, 2001.

E. H. Lieb, B. Simon; The Hartree-Fock theory for Coulomb systems. Comm. Math. Phys., 53 (1977), 185-194.

P.-L. Lions; The Choquard equation and related questions. Nonlinear Anal., 4 (1980), 1063- 1072.

J.-Q. Liu, X.-Q. Liu, Z.-Q. Wang; Multiple sign-changing solutions for quasilinear elliptic equations via perturbation method. Comm. Partial Differential Equations, 39 (2014), 2216- 2239.

J.-Q. Liu, X.-Q. Liu, Z.-Q. Wang. Multiple mixed states of nodal solutions for nonlinear Schršodinger systems. Calc. Var. Partial Differential Equations, 52 (2015), 565-586.

X. Liu, S. Ma, J. Xia; Multiple bound states of higher topological type for semi-classical Choquard equations. Proc. Roy. Soc. Edinburgh Sect. A, 151 (2021), 329-355.

Z. Liu, J. Sun; Invariant sets of descending flow in critical point theory with applications to nonlinear differential equations. J. Differential Equations, 172 (2001), 257-299.

I. M. Moroz, R. Penrose, P. Tod; Spherically-symmetric solutions of the Schršodinger-Newton equations. Topology of the Universe Conference (Cleveland, OH, 1997), 15 (1998), 2733-2742.

V. Moroz, J. V. Schaftingen; Groundstates of nonlinear Choquard equations: existence, qualitative properties and decay asymptotics. J. Funct. Anal., 265 (2013), 153-184.

V. Moroz, J. V. Schaftingen. Existence of groundstates for a class of nonlinear Choquard equations. Trans. Amer. Math. Soc., 367 (2015), 6557-6579.

V. Moroz, J. V. Schaftingen. Groundstates of nonlinear Choquard equations: Hardy- Littlewood-Sobolev critical exponent. Commun. Contemp. Math., 17 (2015), no. 1550005, 1-12.

V. Moroz, J. V. Schaftingen; A guide to the Choquard equation. J. Fixed Point Theory Appl., 19 (2017), 773-813.

T. Mukherjee, K. Sreenadh; On concentration of least energy solutions for magnetic critical Choquard equations. J. Math. Anal. Appl., 464 (2018), 402-420.

S. Pekar; Untersuchungen šuber die elektronentheorie der kristalle. Akademie Verlag., Berlin, 1954.

S. Qi, W. Zou; Semiclassical states for critical Choquard equations. J. Math. Anal. Appl., 498 (2021), no. 124985, 1-25.

X. Tang, S. Chen; Singularly perturbed Choquard equations with nonlinearity satisfying Berestycki-Lions assumptions. Adv. Nonlinear Anal., 9 (2020), 413-437.

K. Tintarev, K.-H. Fieseler; Concentration compactness. Functional-analytic grounds and applications. Imperial College Press, London, 2007.

T. Wang, T. Yi; Uniqueness of positive solutions of the Choquard type equations. Appl. Anal., 96 (2017), 409-417.

X. Wang, F. Liao; Ground state solutions for a Choquard equation with lower critical exponent and local nonlinear perturbation. Nonlinear Anal., 196(2020), no. 111831, 1-13.

J. Wei, M. Winter; Strongly interacting bumps for the Schršodinger-Newton equations. J. Math. Phys., 50 (2009), no. 012905, 1-22.

H. Yang; Singularly perturbed quasilinear Choquard equations with nonlinearity satisfying Berestycki-Lions assumptions. Bound. Value Probl., 2021(2021), no. 86, 1-18.

M. Yang; Semiclassical ground state solutions for a Choquard type equation in R2 with critical exponential growth. ESAIM Control Optim. Calc. Var., 24 (2018), 177-209.

M. Yang, Y. Ding; Existence of solutions for singularly perturbed Schršodinger equations with nonlocal part. Commun. Pure Appl. Anal., 12 (2013), 771-783.

B. Zhang, X.-Q. Liu; Localized nodal solutions for semiclassical quasilinear Choquard equations with subcritical growth. Electron. J. Differential Equations, 2022 (2022), no. 11, 1-29.

H. Zhang, F. Zhang; Multiplicity and concentration of solutions for Choquard equations with critical growth. J. Math. Anal. Appl., 481 (2020), no. 123457, 1-21.

J. Zhang, W. Lšu, Z. Lou; Multiplicity and concentration behavior of solutions of the critical Choquard equation. Appl. Anal., 100 (2021), 167-190.

J. Zhang, Q. Wu, D. Qin; Semiclassical solutions for Choquard equations with Berestycki- Lions type conditions. Nonlinear Anal., 188 (2019), 22-49.

J. Zhao, X.-Q. Liu, J.-Q. Liu; p-Laplacian equations in R^N with finite potential via truncation method, the critical case. J. Math. Anal. Appl., 455 (2017), 58-88.

Downloads

Published

2024-02-16

Issue

Section

Articles

Categories

How to Cite

Localized nodal solutions for semiclassical Choquard equations with critical growth. (2024). Electronic Journal of Differential Equations, 2024(01-??), No. 19, 1-37. https://doi.org/10.58997/ejde.2024.19