Normalized ground state of a mixed dispersion nonlinear Schrodinger equation with combined power-type nonlinearities

Authors

  • Zhouji Ma Northeast Normal Univ., Changchun, Jilin, China
  • Xiaojun Chang Northeast Normal Univ., Changchun, Jilin, China
  • Zhaosheng Feng Univ. of Texas Rio Grande Valley, Edinburg, TX, USA

DOI:

https://doi.org/10.58997/ejde.2024.29

Keywords:

Normalized solutions; Schrodinger equation; Lagrange multiplier; ground states; Nehari-Pohozaev manifold

Abstract

We study the existence of normalized ground state solutions to a mixed dispersion fourth-order nonlinear Schrodinger equation with combined power-type nonlinearities. By analyzing the subadditivity of the ground state energy with respect to the prescribed mass, we employ a constrained minimization method to establish the existence of ground state that corresponds to a local minimum of the associated functional. Under certain conditions, by studying the monotonicity of ground state energy as the mass varies, we apply the constrained minimization arguments on the Nehari-Pohozaev manifold to prove the existence of normalized ground state solutions.

For more information see https://ejde.math.txstate.edu/Volumes/2024/29/abstr.html

References

T. Bartsch, N. Soave; A natural constraint approach to normalized solutions of nonlinear Schrodinger equations and systems, J. Funct. Anal., 272 (2017), 4998-5037.

J. Bellazzini, L. Jeanjean, T. Luo; Existence and instability of standing waves with prescribed norm for a class of Schrodinger-Poisson equations, Proc. Lond. Math. Soc. (3), 107 (2013), 303-339.

D. Bonheure, J.-B. Casteras, T. Gou, L. Jeanjean; Normalized solutions to the mixed dispersion nonlinear Schrodinger equation in the mass critical and subcritical regime, Trans. Amer. Math. Soc., 372 (2019), 2167-2212.

D. Bonheure, J.-B. Casteras, T. Gou, L. Jeanjean; Strong instability of ground states to a fourth order Schrodinger equation, Int. Math. Res. Not. IMRN, (2019), 5299-5315.

D. Bonheure, J.-B. Casteras, E. Moreira dos Santos, R. Nascimento; Orbitally stable standing waves of a mixed dispersion nonlinear Schrodinger equation, SIAM J. Math. Anal., 50 (2018), 5027-5071.

D. Bonheure, R. Nascimento; Waveguide solutions for a nonlinear Schrodinger equations with mixed dispersion, in: Contributions to nonlinear elliptic equations and systems, Progr. Nonlinear Differential Equations Appl., 86, Birkhauser/Springer, Cham, (2015), 31-53.

J. Borthwick, X. Chang, L. Jeanjean, N. Soave; Normalized solutions of L2-supercritical NLS equations on noncompact metric graphs with localized nonlinearities, Nonlinearity, 36, (2023), 3776-3795.

T. Boulenger, E. Lenzman; Blowup for biharmonic NLS, Ann. Sci. Ž Ec. Norm. SupŽer. (4), 50 (2017), 503-544.

N. Boussašýd, A. J. FernŽandez, L. Jeanjean; Some remarks on a minimization problem associated to a fourth order nonlinear Scrhšodinger equation, arXiv.1910.13177.

T. Cazenave, P.-L. Lions; Orbital stability of standing waves for some nonlinear Schrodinger equations, Comm. Math. Phys., 85 (1982), 549-561.

L. Cely; Normalized solutions for Sobolev critical Schrodinger-Bopp-Podolsky systems, Electron. J. Differential Equations, 2023 (2023), no. 76, 1-20.

X. Chang, L. Jeanjean, N. Soave; Normalized solutions of L2-supercritical NLS equations on compact metric graphs, Ann. Inst. H. PoincarŽe C Anal. Non LinŽeaire, DOI: 10.4171/AIHPC/8.

X. Chang, M. Liu, D. Yan; Normalized ground state solutions of nonlinear Schrodinger equations involving exponential critical growth, J. Geom. Anal., 33 (2023), Paper No. 83, 20pp.

A. Fernandez, L. Jeanjean, R. Mandel, M. Maris; Non-homogeneous Gagliardo-Nirenberg inequalities in RN and application to a biharmonic non-linear Schrodinger equation, J. Differential Equations, 330 (2022), 1-65.

G. Fibich, B. Ilan, G. Papanicolaou; Self-focusing with fourth-order dispersion, SIAM J. Appl. Math., 62 (2002), 1437-1462.

B. A. Ivanov, A. M. Kosevich; Stable three-dimensional small-amplitude soliton in magnetic materials, So. J. Low Temp. Phys., 9 (1983), 439-442.

L. Jeanjean; Existence of solutions with prescribed norm for semilinear elliptic equations, Nonlinear Anal., 28 (1997), 1633-1659.

L. Jeanjean, J. Jendrej, T. T. Le, N. Visciglia; Orbital stability of ground states for a Sobolev critical Schrodinger equation, J. Math. Pures Appl. (9), 164 (2022), 158-179.

L. Jeanjean, T. T. Le; Multiple normalized solutions for a Sobolev critical Schrodinger equation, Math. Ann., 384 (2022), 101-134.

V. I. Karpman; Stabilization of soliton instabilities by higher-order dispersion: Fourth-order nonlinear Schrodinger-type equations, Phys. Rev. E, 53 (1996), 1336-1339.

V. I. Karpman, A. G. Shagalov; Stability of solitons described by nonlinear Schrodinger-type equations with higher-order dispersion, Phys D, 144 (2000), 194-210.

Y. Li, X. Chang, Z. Feng; Normalized solutions for Sobolev critical Schrodinger-Bopp- Podolsky systems, Electron. J. Differential Equations, 2023 (2023), no. 56, 1-19.

M. Liu, X. Chang; Normalized ground state solutions for nonlinear Schrodinger equations with general Sobolev critical nonlinearities, Discrete Contin. Dyn. Syst. Ser. S., DOI: 10.3934/dcdss.2024035.

T. Luo, S. Zheng, S. Zhu; The existence and stability of normalized solutions for a bi-harmonic nonlinear Schrodinger equation with mixed dispersion, Acta Math. Sci. Ser. B (Engl. Ed.), 43 (2023), 539-563.

X. Luo, T. Yang; Normalized solutions for a fourth-order Schrodinger equation with a positive second-order dispersion coefficient, Sci. China Math., 66 (2023), 1237-1262.

H. Lv, S. Zheng, Z. Feng, Existence results for nonlinear Schrodinger equations involving the fractional (p,q)-Laplacian and critical nonlinearities, Electron. J. Differential Equations, 2021 (2021), no. 100, 1-24.

Z. Ma, X. Chang; Normalized ground states of nonlinear biharmonic Schrodinger equations with Sobolev critical growth and combined nonlinearities, Appl. Math. Lett., 135 (2023), Paper No. 108388, 7pp.

Z. Ma, X. Chang, H. Hajaiej, L. Song; Existence and instability of standing waves for the biharmonic nonlinear Schrodinger equation with combined nonlinearities, arXiv.2305.00327.

C. Miao, G. Xu, L. Zhao; Global well-posedness and scattering for the focusing energy-critical nonlinear Schrodinger equations of fourth order in the radial case, J. Differential Equations, 246 (2009), 3715-3749.

F. Natali, A. Pastor; The fourth-order dispersive nonlinear Schrodinger equation: orbital stability of a standing wave, SIAM J. Appl. Dyn. Syst., 14 (2015), 1326-1347.

L. Nirenberg; On elliptic partial differential equations, Ann. Scuola Norm. Sup. Pisa Cl. Sci. (3), 13 (1959), 115-162.

B. Pausader, S. Xia; Scattering theory for the fourth-order Schrodinger equation in low dimensions, Nonlinearity, 26 (2013), 2175-2191.

T. V. Phan; Blowup for biharmonic Schrodinger equation with critical nonlinearity, Z. Angew. Math. Phys., 69 (2018), Paper No. 31, 11pp.

N. Soave; Normalized ground states for the NLS equation with combined nonlinearities, J. Differential Equations, 269 (2020), 6941-6987.

N. Soave; Normalized ground states for the NLS equation with combined nonlinearities: the Sobolev critical case, J. Funct. Anal., 279 (2020), 108610, 43pp.

C. A. Swanson; The best Sobolev constant, Appl. Anal., 47 (1992), 227-239.

S. K. Turitsyn; Three-dimensional dispersion of nonlinearity and stability of multidimensional solitons, Teoret. Mat. Fiz., 64 (1985), 226-232. (in Russian)

J. Wei, Y. Wu; Normalized solutions for Schrodinger equations with critical Sobolev exponent and mixed nonlinearities, J. Funct. Anal., 283 (2022), Paper No. 109574, 46pp.

M. Willem; Minimax Theorems, Progr. Nonlinear Differential Equations Appl., 24. Birkhauser Boston, Inc., Boston, MA, 1996.

Downloads

Published

2024-04-01

Issue

Section

Articles

Categories

How to Cite

Normalized ground state of a mixed dispersion nonlinear Schrodinger equation with combined power-type nonlinearities. (2024). Electronic Journal of Differential Equations, 2024(01-??), No. 29, 1-20. https://doi.org/10.58997/ejde.2024.29