Semigroup theory and asymptotic profiles of solutions for a higher-order Fisher-KPP problem in R^N

Authors

  • José Luis Díaz Palencia Univ. a Distancia de Madrid, Spain

DOI:

https://doi.org/10.58997/ejde.2023.04

Abstract

We study a reaction-diffusion problem formulated with a higher-order operator, a non-linear advection, and a Fisher-KPP reaction term depending on the spatial variable. The higher-order operator induces solutions to oscillate in the proximity of an equilibrium condition. Given this oscillatory character, solutions are studied in a set of bounded domains. We introduce a new extension operator, that allows us to study the solutions in the open domain RN, but departing from a sequence of bounded domains. The analysis about regularity of solutions is built based on semigroup theory. In this approach, the solutions are interpreted as an abstract evolution given by a bounded continuous operator. Afterward, asymptotic profiles of solutions are studied based on a Hamilton-Jacobi equation that is obtained with a single point exponential scaling. Finally, a numerical assessment, with the function bvp4c in Matlab, is introduced to discuss on the validity of the hypothesis.

For more information see https://ejde.math.txstate.edu/Volumes/2023/04/abstr.html

References

Aronson, D.; Density-dependent interaction-diffusion systems. Proc. Adv. Seminar on Dy- namics and Modeling of Reactive System, Academic Press, New York, 1980.

Aronson, D.; Weinberger, H.; Nonlinear diffusion in population genetics, combustion and nerve propagation. Partial Differential Equations and Related Topic. Pub., New York, (1975), 5-49.

Aronson, D.; Weinberger, H.; Multidimensional nonlinear diffusion arising in population ge- netics. Adv. in Math. 30 (1978), pp 33-76.

Audrito, A.; Vazquez, J. L.; The Fisher-KPP problem with doubly nonlinear fast diffusion Nonlinear Analysis, 157 (2017), pp 212-248.

Bhalla, R. S.; Kapov, A. K.; Panigrahi, P. K.; Quantum Hamilton-Jacobi formalism and its bound state spectra. Am J. Phys. 65 (1997) 4., 1187.

Bonheure, D.; Sanchez, L.; Heteroclinics Orbits for some classes of second and fourth order differential equations. Handbook of differential equations. 3(2006), 103-202.

Bracken, P.; The quantum Hamilton-Jacobi formalism in complex space. Quantum Stud.: Math. Found. 7 (2020), 389-403.

Cabre, X.; Roquejoffre, J.; The influence of fractional diffusion in Fisher-KPP equations. Comm. Math. Phys. 320 (2013), pp 679-722.

Canuto, C.; Quarteroni, A.; Approximation results for orthogonal polynomials in Sobolev spaces. Math. Comp. 38 (1982), 67-86.

Chavez, M.; Galaktionov, V.; Regional blow up for a higherer-order semilinear parabolic equation. Euro. Jnl of Applied Mathematics vol 12 (2001), pp. 601-623.

Chen, X.; Liu, J.; A note on Aubin-Lions-Dubinski Lemmas. Acta Aplicandae Mathematicae (2013).

Cohen, D. S.; Murray, J. D.; (1981). A generalized diffusion model for growth and dispersal in a population. J. Math. Biology 12 (1981) , 237-249. https://doi.org/10.1007/BF00276132

Coutsias, E. A.; Some effects of spatial nonuniformities in chemically reacting systems. California Institute of Technology, 1980.

Dee, G. T.; Van Sarloos, W.; Bistable systems with propagating fronts leading to pattern formation. Physical Review Letter Volume 60, 19080.

Egorov, Y. Galaktionov, V. Kondratiev V. Pohozaev, S. (2004). Global solutions of higherer- order semilinear parabolic equations in the supercritical range. Adv. Differ. Equat., 9, pp 1009-1038.

Enright, H.; Muir P. H.; A Runge-Kutta type boundary value ODE solver with defect control. Teh.Rep. 267/93, University of Toronto, Dept. of Computer Sciences. Toronto. Canada. 1993.

Evans, L.; Partial Differential Equations. American Mathematical Society, 2010.

Fisher, R. A.; The advance of advantageous genes. Ann. Eugenics, 7 (1937). pp 355-369.

Galaktionov, V. A.; On a spectrum of blow-up patterns for a higherer-order semilinear parabolic equation. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences., 2001.

Galaktionov, V.; Towards the KPP-Problem and Log-Front Shift for higherer-Order Nonlinear PDEs I. Bi-Harmonic and Other Parabolic Equations. Cornwell University arXiv:1210.3513, 2012.

Goldshtein, V.; Ukhlov, A.; Weighted Sobolev Spaces and embeddings Theorems. Trans. Am. Math. Soc. 361 (2009), 3829-3850.

Harley, K,; Van Heijster, R.; Marangell, R.; Pettet G.; Roberts, T.; Wechselberger M.; Instability of Travelling Waves in a Model of Haptotaxis. (2019) Preprint.

Kesavan, S.; Topics in Functional Analysis and Applications. New Age International (for- merly Wiley-Eastern), 1989/

Kolmogorov, A. N.; Petrovskii I. G. ; Piskunov, N. S.; Study of the diffusion equation with growth of the quantity of matter and its application to a biological problem. Byull. Moskov. Gos. Univ., Sect. A, 1 (1937).

Leacock, R. A.; Padgett, M. S.; Hamilton-Jacobi action angle quantum mechanics. Phys. Rev. D28 (1983), 2491.

Leacock, R. A.; Padgett, M. S.; Hamilton-Jacobi theory and quantum action variables. Phys. Rev. Lett. 50 (1083), 3.

Montaru, A.; Wellposedness and regularity for a degenerate parabolic equation arising in a model of chemotaxis with nonlinear sensitivity. Discrete and Continuous Dynamical Systems - B, 19, 1 (2014), pp 231-256.

Okubo, A.; Levin, S.A.; The Basics of Diffusion. In: Diffusion and Ecological Problems: Modern Perspectives. Interdisciplinary Applied Mathematics, vol 14 (2001). Springer, New York, NY. https://doi.org/10.1007/978-1-4757-4978-6.

Pazy, A.; Semigroups of Linear Operators and Application to Partial Differential Equations. Springer-Verlag, Appplied Math. Sciences, Vol, 44, 1983.

Peletier, L. A.; Troy, W. C.; Spatial Patterns. higherer order models in Physics and Mechanics. Progress in non linear differential equations and their applications. Volume 45. Universite Pierre et Marie Curie. 2001.

Perumpanani, J. A.; Sherratt, J.; Norbury; H. M. Byrne; A two parameter family of travelling waves with a singular barrier arising from the modelling of extracellular matrix mediated cellular invasion. Physica D. 126 (1999), 145-159.

Rottschafer, V.; Doelman, A.; On the transition from the Ginzburg-Landau equation to the extended Fisher-Kolmogorov equation. Physica D, 118 (1998), 261 - 292.

Downloads

Published

2023-01-16

Issue

Section

Articles

Categories

How to Cite

Semigroup theory and asymptotic profiles of solutions for a higher-order Fisher-KPP problem in R^N. (2023). Electronic Journal of Differential Equations, 2023(01-87), No. 04, 1-17. https://doi.org/10.58997/ejde.2023.04