Viscosity solutions to the infinity Laplacian equation with lower terms

Authors

  • Cuicui Li Nanjing Univ. of Science and Tech., Nanjing, Jiangsu, China
  • Fang Liu Nanjing Univ. of Science and Tech., Nanjing, Jiangsu, China

DOI:

https://doi.org/10.58997/ejde.2023.42

Keywords:

Infinity Laplacian; existence; uniqueness; asymptotic estimate; viscosity solution

Abstract

We establish the existence and uniqueness of viscosity solutions to
the Dirichlet problem $$\displaylines{ \Delta_\infty^h u=f(x,u), \quad \hbox{in } \Omega,\cr u=q, \quad\hbox{on }\partial\Omega,}$$ where \(q\in C(\partial\Omega)\), \(h>1\), \(\Delta_\infty^h u=|Du|^{h-3}\Delta_\infty u\). The operator \(\Delta_\infty u=\langle D^2uDu,Du \rangle\) is the infinity Laplacian which is strongly degenerate, quasilinear and it is associated with the absolutely minimizing Lipschitz extension. When the nonhomogeneous term \(f(x,t)\) is non-decreasing in \(t\), we prove the existence of the viscosity solution via Perron's method. We also establish a uniqueness result based on the perturbation analysis of the viscosity solutions. If the function \(f(x,t)\) is nonpositive (nonnegative) and non-increasing in \(t\), we also give the existence of viscosity solutions by an iteration technique under the condition that the domain has small diameter. Furthermore, we investigate the existence and uniqueness of viscosity solutions to the boundary-value problem with singularity $$\displaylines{
\Delta_\infty^h u=-b(x)g(u), \quad \hbox{in } \Omega, \cr u>0, \quad \hbox{in } \Omega, \cr u=0, \quad \hbox{on }\partial\Omega, }$$ when the domain satisfies some regular condition. We analyze asymptotic estimates for the viscosity solution near the boundary.

For more information see https://ejde.math.txstate.edu/Volumes/2023/42/abstr.html

References

S. Armstrong, C. Smart; An easy proof Jensen’s theorem on the uniqueness of infinity harmonic functions, Calc. Var. Partial Differ. Equ., 37 (2010), 381-384.

G. Aronsson; Minimization problems for the functional supx F (x, f (x), f ′(x)), Ark. Mat., 6 (1965), 33-53.

G. Aronsson; Minimization problems for the functional supx F (x, f (x), f ′(x)) II, Ark. Mat., 6 (1966), 409-431.

G. Aronsson; Extension of functions satisfying Lipschitz conditions, Ark. Mat., 6 (1967), 551-561.

G. Aronsson; Minimization problems for the functional supx F (x, f (x), f ′(x)) III, Ark. Mat., 7 (1969), 509-512.

G. Aronsson, M. G. Crandall, P. Juutinen; A tour of the theory of absolutely minimizing functions, Bull. Amer. Math. Soc., 41 (2004), 439-505.

G. Barles, J. Busca; Existence and comparison results for fully nonlinear degenerate elliptic equations without zeroth-order term, Comm. Partial Diff. Equations, 26 (2001), 2323-2337.

E.N. Barron, L.C. Evans, R. Jensen; The infinity Laplacian, Aronsson’s equation and their generalizations, Trans. Amer. Math. Soc., 360 (2008), 77-101.

E. Barron, R. Jensen, C. Wang; The Euler equation and absolute minimizers

of L∞ functionals, Arch. Ration. Mech. Anal., 157 (2001), 255-283.

T. Bhattacharya, A. Mohammed; On solutions to Dirichlet problems involving the infinity-Laplacian, Adv. Calc. Var., 4 (2011), 445-487.

T. Bhattacharya, A. Mohammed; Inhomogeneous Dirichlet problems involving the infinity-Laplacian, Adv. Differential Equations, 17 (2012), no.3-4, 225-266.

N. H. Binghan, C. M. Goldie, J. L. Teugels; Regular variation, Cambridge: Cambridge University Press, 1987.

T. Biset, A. Mohammed; A singular boundary value problem for a degenerate elliptic PDE, Nonlinear Analysis: Theory, Methods & Applications, 119 (2015), 222-234.

A. Biswas, H. H. Vo; Liouville theorems for infinity Laplacian with gradient and KPP type equation, preprint.

F. Cˆırstea, V. Rˇadulescu; Uniqueness of the blow-up boundary solution of logistic equations with absorption, C. R. Acad. Sci. Paris, S ́er. I, 335 (2002), 447-452.

F. Cirstea, V. Radulescu; Asymptotics for the blow-up boundary solution of the logistic equation with absorption, C. R. Acad. Sci. Paris, S ́er. I, 336 (2003), 231-236.

F. Cˆırstea, V. Radulescu; Nonlinear problems with boundary blow-up: aKaramata regular variation theory approach, Asymptot. Anal., 46 (2006), 275-298.

M. G. Crandall; A visit with the ∞-Laplace equation, Calculus of variations and nonlinear partial differential equations, 75-122, Lecture Notes in Math., 1927, Springer, Berlin, 2008.

M. G. Crandall, L. C. Evans, R. F. Gariepy; Optimal Lipschitz extensions and the infinity-Laplacian, Calc. Var. Partial Differ. Equ., 13 (2001), 123-139.

M. G. Crandall, L. C. Evans, P. L. Lions; Some properties of viscosity solutions of Hamilton-Jacobi equations, Trans. Am. Math. Soc., 282 (1984), 487-502.

M. G. Crandall, G. Gunnarsson, P. Wang; Uniqueness of ∞-harmonic functions and the eikonal equation, Comm. Partial Differential Equations, 32 (2007), no.10-12, 1587-1615.

M. G. Crandall, H. Ishii, P. L. Lions; User’s guide to viscosity solutions of second order partial differential equations, Bull. Amer. Math. Soc. (N. S.), 27 (1992), 1-67.

M. G. Crandall, P. L. Lions; Viscosity solutions and Hamilton-Jacobi equations, Trans. Am. Math. Soc., 277 (1983), 1-42.

L. C. Evans; The 1-Laplacian, the infinity Laplacian and differential games, Contemp. Math., 446 (2007), 245-254.

R. Jensen; Uniqueness of Lipschitz extensions: minimizing the sup norm of the gradient, Arch. Rational Mech. Anal., 123 (1993), 51-74.

C. Li, F. Liu; Large solutions of a class of degenerate equations associated with infinity Laplacian, Adv. Nonlinear Stud., 22 (2022), 67-87.

C. Li, F. Liu, Peibiao Zhao; Boundary blow-up solutions to the equation involved in infinity Laplacian, J. Aust. Math. Soc., 114 (2023), 337-358.

T. Lin, F. Liu; Viscosity solutions to the infinity Laplacian equation with strong absorptions, Comm. Pure and Applied Anal., 21 (2022), no. 12, 4251-4267.

F. Liu; The eigenvalue problem for a class of degenerate operators related to the normalized p-Laplacian, Disc. and Conti. Dynamical Systems(B), 27 (2022), no. 5, 2701-2720.

F. Liu, L. Tian, P. Zhao; A weighted eigenvalue problem of the degenerate operator associated with infinity Laplacian, Nonlinear Analysis:TMA, 200 (2020), 112001, 15 pp.

F. Liu, X. Yang; A weighted eigenvalue problem of the biased infinity Laplacian, Nonlinearity, 34 (2021), 1197-1237.

F. Liu, X. Yang; Solutions to an inhomogeneous equation involving infinity-Laplacian, Non-linear Analysis: Theory, Methods & Applications, 75 (2012), 5693-5701.

R. L ́opez-Soriano, J. C. Navarro-Climent, J. D. Rossi; The infinity Laplacian with a transport term, J. Math. Anal. Appl., 398 (2013), 752-765.

G. Lu, P. Wang; A PDE perspective of the normalized infinity Laplacian, Comm. Part. Diff. Eqns., 33 (2008), no.10, 1788-1817.

G. Lu, P. Wang; Inhomogeneous infinity Laplace equation. Adv. Math., 217 (2008), 1838-1868.

G. Lu, P. Wang; A uniqueness theorem for degenerate elliptic equations, Seminario Interdis-ciplinare di Matematica, 7 (2008), 207-222.

G. Lu, P. Wang; Infinity Laplace equation with non-trivial right-hand side, Electronic Journal of Differential Equations, 77 (2010), 517-532.

L. Mi, Boundary behavior for the solutions to Dirichlet problems involving the infinity-Laplacian, J. Math. Anal. Appl., 425 (2015), 1061-1070.

Y. Peres, G. Pete, S. Somersille; Biased tug-of-war, the biased infinity Laplacian, and comparison with exponential cones, Calc. Var. PDE. 38 (2010), no.3-4, 541-564.

Y. Peres, O. Schramm, S. Sheffield, D. Wilson; Tug-of-war and the infinity Laplacian, J. Amer. Math. Soc., 22 (2009), no.1, 167-210.

S. I. Resnick; Extreme Values, Regular Variation, and Point Processes, Applied Probability. A Series of the Applied Probability Trust, 4, Springer-Verlag, New York, Berlin, 1987. xii+320 pp.

J. D. Rossi; Tug-of-war games and PDEs, Proc. Roy. Soc. Edinburgh Sect. A, 141 (2011), no.2, 319-369.

E. Seneta; Regularly Varying Functions, Lecture Notes in Math., 508, Springer-Verlag, Berlin-New York, 1976, v+112 pp.

Y. Yu; Uniqueness of values of Aronsson operators and running costs in “tug-of-war” games, Ann. Inst. H. Poincare C Anal. Non Lin ́eaire, 26 (2009), no.4, 1299-1308.

Downloads

Published

2023-06-25

Issue

Section

Articles

Categories

How to Cite

Viscosity solutions to the infinity Laplacian equation with lower terms. (2023). Electronic Journal of Differential Equations, 2023(01-87), No. 42, 1-23. https://doi.org/10.58997/ejde.2023.42